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Abstract

The large delays experienced at major airports, which impose substantial costs on airlines,

passengers and society, require the implementation of airport congestion mitigation tools to

improve the efficiency and reliability of the air transportation system. This paper presents a

decision-making tool to optimize the utilization of airport capacity at the tactical level in the

face of operational uncertainty. A novel approach is developed to minimize congestion costs

by jointly controlling runway configurations and arrival and departure service rates through the

course of a day of operations as a function of observed congestion on the ground and in the air and

of meteorological and wind conditions. The approach combines stochastic queue dynamics with

a decision-making framework based on dynamic programming. An effective formulation of this

problem allows the optimal policy to be found within reasonable time frames. An approximate

algorithm is also implemented to enable on-line implementation of the model and is shown to

yield near-optimal policies. The application of this model to John F. Kennedy International

Airport suggests that the implementation of this dynamic control can result in substantial

congestion cost savings, of the order of 15% to 20%. The approach also provides a new way

of controlling arrival and departure service rates in dynamic models of airport congestion, thus

enhancing the usefulness of these methodologies.
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1 Introduction

Airport congestion is an increasingly important and costly phenomenon worldwide. In the United

States, air traffic delays reached an all-time peak in 2007, and their nationwide impact was estimated

at over $30 billion for that calendar year, including $8.3 billion in costs to airlines and $16.7 billion

in costs to passengers [1]. The main cause of these delays is the demand-capacity mismatches due to

lower realized capacity at the airports than scheduling levels. Indeed, the Bureau of Transportation

Statistics [6] has reported, over recent years, approximately half of the system-wide delays as
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National Aviation System delays, due to heavy traffic volume, to capacity shortages due to non-

extreme weather conditions, to inefficiencies in airport operations etc. Moreover, over one-fourth of

total delays were due to the propagation of schedule disturbances within the network of operations,

themselves primarily created by demand-capacity mismatches at upstream airports. In other words,

delays not created by demand-capacity mismatches and due to inefficiencies in airline operations, to

extreme weather and to security procedures merely account for approximately 25% of the nationwide

delays.

The reduction of flight delays in the United States can therefore be achieved primarily by

reducing the imbalance between demand and capacity at the busiest airports. This can be done

by expanding capacity through the construction of new airports or of new runways, as airport

capacity is primarily constrained by the runway system [7]. However, such infrastructure projects

require extensive investments and many years to plan and implement, and, more importantly, are

hardly feasible in the most densely populated areas because of geographic, environmental, economic

and political issues. A second way to reduce the demand-capacity mismatch is to limit peak-hour

scheduling levels through the imposition of demand management measures, either administrative

(e.g., slot control), or economic (e.g., congestion pricing, slot auctions). It has been demonstrated

that such mechanisms could lead to significant delay reductions [16] and could provide operational

benefits to air carriers and passengers [21, 20]. However, the implementation of these measures has

been limited in the United States due to the constraints on flight schedules they would impose and

the resulting potential distortions in airline competition.

In this paper, we examine a third way of reducing the demand-capacity mismatches, namely

through improvements in capacity utilization at the tactical level to improve operational efficiency.

For a fixed schedule of flights on a given day, airport congestion can be mitigated through effective

use of available capacity to best operate takeoffs and landings. Airport efficiency has been shown

to depend primarily on the runway configuration in use, i.e., the set of active runways on which

landings and takeoffs are operated, and on the relative proportion of landings and takeoffs at any

given time [19]. We develop an airport congestion mitigation tool that minimizes congestion costs at

the tactical level by jointly controlling runway configurations and arrival and departure service rates

to best operate scheduled landings and takeoffs. This joint control is most critical when different

sets of arrival and departure service rates can be achieved under different runway configurations.

This may occur in practice if, for instance, a particular configuration would allocate one runway

to arrivals and two runways to departures, while an alternative configuration would allocate two

runways to arrivals and a single one to departures.

Given the stochastic nature and the variability over time of airport operations, this control of

runway configurations and of arrival and departure service rates is exercised dynamically through

the course of the day. Indeed, the formation and propagation of airport queues is inherently

stochastic, as queues do not depend solely on the schedule of flights and the availability of airport
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capacity, but are also shaped by the exact sequencing of arrivals and departures, by the mix of

aircraft, by human factors in aircraft operations, etc. Past research has demonstrated that dynamic

and stochastic models of airport congestion approximate quite accurately the extents of congestion

observed in practice at the busiest US airports [17] and provide higher estimates of flight delays

than deterministic ones [13]. Moreover, operating conditions, such as weather and winds, are also

stochastic and directly impact airport operations: winds constrain the set of runways that can

be used at any time, while meteorological conditions influence the efficiency of airport operations.

The control is therefore exercised dynamically throughout the day of operations, as a function of

observed arrival and departure queue lengths, of arrival and departure schedules and of observed

operating conditions.

In practice, the selection of runway configurations is one major task faced by air traffic con-

trollers and is primarily made on the basis of experience. Ramanujam and Balakhrishnan developed

a descriptive statistical model that identifies six factors as the key drivers of these decisions at New

York’s airports: inertia, wind speed and directions, arrival and departure schedules, noise abate-

ment procedures, configuration switch proximity and inter-airport coordination [18]. Most of these

factors are taken into account in the decision-making framework developed in this paper.

From a prescriptive standpoint, the optimization of airport capacity utilization at airports has

been an important topic in air traffic flow management research. Gilbo first explicitly considered

the problem of strategically allocating airport capacity between arrivals and departures using the

representation of the non-increasing relationship between arrival capacity and departure capacity

by means of a Capacity Envelope [9, 10]. This framework was later extended to allocate available

capacity at the multi-airport level in the development of the Ground Delay Program [12, 11].

More recent studies addressed the problem of jointly selecting runway configurations and arrival

and service rates by introducing different Capacity Envelopes for different runway configurations.

Bertsimas et al. developed a mixed integer program that solves, at the strategic level, the problem of

determining the optimal schedule of runway configurations and of arrival and departure service rates

at the beginning of a day of operations [5]. Li and Clarke developed an alternative decision-making

framework that dynamically controls runway configurations under stochastic wind conditions [15].

In both cases, it was demonstrated that the joint control of runway configurations and of the arrival

/ departure balance can in fact lead to significant congestion cost savings. Both of these approaches

considered deterministic queue dynamics.

The first contribution of this paper is the development of a new tactical approach to solving the

problem of selecting runway configurations and of balancing the service rates of arrivals and depar-

tures at major airports under stochastic operating conditions. A stochastic and dynamic queuing

model is included in the decision-making framework, so that the control is exercised dynamically

during the day as a function of the observed extent of congestion on the ground and in the air.

For instance, let us consider a given period of the day when more arrivals than departures are
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scheduled. Traditional approaches to runway configuration selection might yield a solution where

a runway configuration that gives priority to arrivals over departures is used during that period.

If, however, a large departure queue is observed on the ground at the beginning of the considered

period, while no arriving aircraft are queuing in the air, then it might be beneficial to choose an

alternative runway configuration in order to enhance the departure throughput and thus allevi-

ate ground congestion. This dynamic approach might then yield operational benefits in the face of

queue uncertainty. Moreover, the stochasticity of operating conditions, including weather and wind

conditions, and their impacts on airport operations are also embedded within the decision-making

framework developed in this paper.

A second contribution of this paper is the integration of the control of arrival and departure

service rates as a part of macroscopic models of airport congestion. Most of the models that

quantify the relationships between flight schedules, airport capacity and flight delays, typically

exercise no control on the arrival and departure service rates and assume exogenous values of these

two quantities [13, 14]. One recent study quantified the impact of runway configuration changes on

predicted delays [16], but did so manually and not systematically. The approach developed in this

paper, by optimizing the control of arrival and departure service rates at the tactical level, allows

greater understanding of how these rates are controlled and of how they can be varied during

the day of operations as a function of arrival and departure schedules. This understanding can

subsequently be used to improve the predictive models of airport congestion at the strategic level.

The remainder of this paper is organized as follows. Section 2 formulates the problem as a

finite-horizon dynamic programming problem and describes the model inputs, the state variables,

the control exercised, the cost function and the system dynamics. Section 3 introduces the dynamic

programming algorithm, which can be applied off-line to determine optimal policies. In addition,

we present an approximation scheme based on a one-step look-ahead algorithm, which is shown to

converge to near-optimal policies. This fast approximate algorithm enables on-line implementation

of the model when new information becomes available during the course of the day (e.g., dynamic

schedule updates, weather forecasts etc.). Section 4 applies this model to the John F. Kennedy

International Airport (JFK), which has experienced the highest average delays nationwide in recent

years. We present optimal policies and show that the control scheme can reduce flight delays by

an order of 15% to 20%. It is also demonstrated that this approach can be used to improve the

selection of arrival and departure service rates in macroscopic models of airport congestion. Finally,

Section 5 summarizes the findings of the paper.

2 Model Formulation

We formulate the dynamic control of runway configurations and arrival and departure service

rates as a finite-horizon dynamic programming model. A day of operations, between 6 a.m. and

12 a.m., is divided into T = 72 periods of length S = 15 minutes each. We index these time
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periods by t = 1, ..., T . Observations and decisions are made at the beginning of each period.

Note that operations between 12 a.m. and 6 a.m. are not considered in this model since they

are typically not capacity-constrained and decisions are based on noise abatement procedures and

other environmental concerns.

2.1 Model Inputs

The model takes as inputs the schedule of landings and takeoffs. During each 15-minute period t

of the day, we denote by xt (resp. yt) the number of aircraft scheduled to land (resp. to take off)

at the considered airport.

The model considers the capacity of each of the different runway configurations of the airport.

Airport capacity is typically represented by means of a Capacity Envelope, which defines the rela-

tionship between the maximal number of arrivals and the maximal number of departures that can

be feasibly operated per unit of time [9]. Given the inherent uncertainty in airport operations, this

representation has recently been modified to account for throughput stochasticity: the Operational

Throughput Envelope represents the relationship between the average arrival rate and the average

departure rate in the presence of continuous demand, for a given runway configuration [19]. This

representation takes into account the traffic mix observed in practice, such as, for instance, differ-

ent aircraft types, different sequencing of arrivals and departures, etc. Since airport operations are

substantially impacted by weather conditions, we consider two distinct Operational Throughput

Envelopes for each runway configuration: the VMC envelope (resp. the IMC envelope) represents

the capacity of the runway configuration in “Visual Meteorological Conditions” (VMC) (resp. in

“Instrument Meteorological Conditions” (IMC)).

A schematic representation of an airport’s Operational Throughput Envelope for a given runway

configuration is provided in Figure 1. Points 1 and 2 represent two sets of average arrival and

departure service rates in VMC and Point 3 represents a set of average service rates in IMC. Two

immediate observations are noteworthy. First, a higher average throughput can be achieved in

VMC than in IMC. Second, the relationship between arrival service rate and departure service rate

for a given runway configuration is non-increasing.

2.2 State Variables

Decisions in each period are based on the observed extent of congestion, on the runway configuration

previously in use and on observed operating conditions. Operating conditions, including weather

and winds, are assumed to be observed at the beginning of each time window and not to change

over one 15-minute period. At the beginning of period t, the state is described by the following

variables:

• Arrival Queue Length at−1: Number of arriving aircraft queuing in the air at the end of the

previous period
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Figure 1: Schematic representation of the VMC and IMC Operational Throughput Envelopes of a
runway configuration

• Departure Queue Length dt−1: Number of departing aircraft queuing on the ground at the

end of the previous period

• The runway configuration in use at period t− 1, denoted by RCt−1

• Weather conditions for the next period, denoted by wct ∈ {VMC, IMC}

• The wind state wst, which determines the set of runway configurations that can be used at

any time. According to FAA-specified safety requirements, a runway can only be used if the

tailwind and crosswind do not exceed the thresholds of 5 knots and 20 knots, respectively. A

wind state is defined as a set of wind vectors, i.e., a set of wind strengths and wind directions,

such that the same set of runways satisfy the threshold requirements. This approach follows

the procedure developed by Li and Clarke [15]. Table 1 defines the 13 wind states at JFK

by specifying, for each of these states, the runways that meet the safety thresholds and those

that do not 1. For instance, State 1 corresponds to a situation of calm winds, so that flights

can be operated on all runways. In contrast, State 9 corresponds to the case of strong winds

from the South, in which case runways 4L, 4R, 31L and 31R face above-threshold tailwinds.

1These 13 wind states account for observed conditions during 99.7% of the periods between 2007 and 2010. The
remaining 0.3% corresponds to rare situations where winds are so strong that no runway orientation satisfies the FAA
threshold requirements. Note, finally, that, since the tailwind threshold is lower than the crosswind threshold, the
system is never in a state where only the four runways 4L, 4R, 22L and 22R can be used or in a state where only
the four runways 13L, 13R, 31L and 31R can be used.
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Table 1: Definition of wind states at JFK: set of runways that can be used per wind state

Wind States 1 2 3 4 5 6 7 8 9 10 11 12 13

4L, 4R ! ! ! ! % ! ! % % ! % % %

22L, 22R ! ! ! % ! % % ! ! % ! % %

13L, 13R ! ! % ! ! ! % ! % % % ! %

31L, 31R ! % ! ! ! % ! % ! % % % !

Proportion 10.6% 7.6% 16.0% 8.9% 15.6% 2.5% 13.6% 8.1% 8.8% 10.3% 0.8% 0.5% 5.7%

2.3 Decision Variables

The decision exercised at each period has two components:

• The runway configuration for the next period RCt. This choice is constrained by the wind

state: a runway configuration can only be used if each of its runways meets the threshold

requirements (Table 1). The set of runway configurations that can be selected when the wind

state is wst is denoted by RC(wst). For each one of JFK’s 8 main runway configurations,

Table 2 indicates the set of wind states for which the configuration can be used 2. When,

for example, JFK is in wind state 1, all 8 configurations are eligible for use. The selection

of the runway configuration and the observation of the weather state determine, in turn, the

Operational Throughput Envelope for the next period.

Table 2: Set of JFK runway configurations that can be selected per wind state

Wind States 1 2 3 4 5 6 7 8 9 10 11 12 13

13L, 22L|13R ! ! % % ! % % ! % % % % %

31L, 31R|31L ! % ! ! ! % ! % ! % % % !

22L|22R, 31L ! % ! % ! % % % ! % % % %

4R|4L, 31L ! % ! ! % % ! % % % % % %

13L|13R ! ! % ! ! ! % ! % % % ! %

31R|31L ! % ! ! ! % ! % ! % % % !

22L|22R ! ! ! % ! % % ! ! % ! % %

4R|4L ! ! ! ! % ! ! % % ! % % %

• The service rates at which arrivals and departures are served, controlled among the outermost

set of achievable service rates for the selected runway configuration and the observed weather

conditions. For instance, in the case represented in Figure 1, the decision-maker can decide

to operate, in VMC, with the arrival and departure service rates corresponding to point 1

or to point 2 or to any other point on the envelope. The decision-maker in fact selects the

arrival service rate for the next period, denoted by µat ∈ {0, ..., ARCt,wct}. The upper bound of

this choice ARCt,wct corresponds to the highest arrival throughput that can be realized in the

2A runway configuration is denoted by the set of active runways on which landings are operated, followed by the
set of active runways on which takeoffs are operated.
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selected runway configuration and observed weather conditions. In turn, the departure service

rate, is determined by the Operational Throughput Envelope corresponding to the selected

runway configuration and the observed weather conditions. We denote by µdt = ΦRCt,wct (µat )

the departure service rate associated with the arrival service rate µat when the airport operates

in runway configuration RCt and in weather conditions wct.

2.4 System Dynamics

2.4.1 Queue Dynamics

Arrival and departure queues are modeled by means of two dynamic and stochastic M(t)/Ek(t)/1

queuing models, which have been shown to describe accurately the queue dynamics observed in

practice [17, 14]. The demand processes are modeled as Poisson processes, whose rates are de-

termined by the number of arriving and departing flights scheduled per 15-minute time window.

The service processes are modeled as Erlang processes of order k, whose rates are controlled by

the decision-maker. A value of k = 3 is used in practice [14]. The model is non-stationary: the

demand and service rates are time-varying. These rates are modeled as constant over a 15-minute

time-window t and are thus denoted by λt and µt, respectively. Note that the service rates of the

arrival and departure processes are not independent from each other since they are jointly deter-

mined by the Operational Throughput Envelope. However, the stochastic evolution of the arrival

queue is independent from that of the departure queue.

The state-transition diagram of the M(t)/Ek(t)/1 queuing system is shown in Figure 2. This

relies on the characterization of an Erlang process of order k and rate µ as the succession of k

independent and Markovian “stages of work” at rate kµ. The state of the system is therefore defined

by the number of remaining of stages of work, denoted by i. The evolution of the queuing system

over time period t is described by a system (1) of Chapman-Kolmogorov first-order differential

equations. In these equations, we introduce a time index s that varies over the 15-minute time

window. In other words, the index s varies, during period t, between (t − 1)S and tS, where S

denotes the length of a time-window (in this case, 15 minutes). These equations determine the

time evolution of the state probabilities Pi(s), which characterize the probability of being in state

i at time s. The practical queue capacity is denoted by N . The system is assumed to be empty at

the beginning of the day of operations.

dP0(s)
ds = −λtP0(s) + kµtP1(s)

dPi(s)
ds = −(λt + kµt)Pi(s) + kµtPi+1(s) ∀i ∈ {1, ..., k}

dPi(s)
ds = λtPi−k(s)− (λt + kµt)Pi(s) + kµtPi+1(s) ∀i ∈ {k + 1, ..., (N − 1)k}

dPi(s)
ds = λtPi−k(s)− kµtPi(s) + kµtPi+1(s) ∀i ∈ {(N − 1)k + 1, ..., kN − 1}

dPkN (s)
ds = λtPk(N−1)(s)− kµtPkN (s)

(1)
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Figure 2: State-transition diagram of the M(t)/Ek(t)/1 queuing system

Because of the computational requirements of this system of differential equations, we solve

it off-line. We store in a look-up table the transition probabilities over a full time window, i.e.,

P (St+1 = j|St, λt, µt), for all j, St, λt, µt, where St denotes the state of the system at the end of

period t. In this way, we do not have to re-solve this system of equations at each iteration of the

dynamic programming algorithm.

Since decision-makers cannot observe the fine-grain state of the system, i.e., the number of

remaining “stages of work”, but observe the queue length instead, we proceed by aggregation. In

other words, we map the state transition probabilities into queue length transition probabilities.

The relationship between the states of the system and observed queue lengths is depicted in Figure 3.

Since this mapping is not bijective, we make the following assumption: at the beginning of each

period, the system is in one of the states {mk, 0 ≤ m ≤ N}, i.e., no aircraft is being served at the

beginning of a period. The motivation for this choice is that the average service rate of arrivals

and departures is typically significantly larger than 1 per period. Under this assumption, the queue

length transition probabilities are computed as follows, where qt (resp. St) represents the queue

length (resp. the state of the system) at the end of period t, for all λt, µt:

P (qt+1 = 0|qt, λt, µt) = P (St+1 = 0|St = qtk, λt, µt) ,∀qt, λt, µt
P (qt+1 = j|qt, λt, µt) =

∑k
s=1 P (St+1 = (j − 1)k + s|St = qtk, λt, µt) , ∀j = 1, ..., N, qt, λt, µt

(2)

2.4.2 Runway Configuration Changes

Switching runway configurations is a challenging operational procedure that requires extensive

coordination among several airport stakeholders, including airlines and air traffic controllers. Most

importantly, queuing aircraft need to be re-routed, which may lead to operational inefficiencies

and to the closure of runway operations for some time. We represent the cost associated with

runway configuration changes by a time period of idleness, of length denoted by τI , during which

arriving and departing aircraft may join the queue at an unchanged rate – determined by scheduling
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Figure 3: Mapping between queue states and queue length

levels – but no flight is operated. In other words, we assume that, if the decision-maker decides to

change runway configurations and chooses arrival and departure service rates µ(d) and µ(a) from the

Operational Throughput Envelope of the new runway configuration, then the arrival and departure

service rates are both equal to 0 for a given time period τI , after which the arrival and departure

service rates are, respectively, equal to µ(d) and µ(a) until the end of the 15-minute time window.

This situation is depicted in Figure 4, where a runway configuration change takes place at the

beginning of the tth period.

(t− 1)S (t− 1)S + τI tS

� �� �
µat = 0
µdt = 0

µat = µ(a)

µdt = µ(d)

Previous runway

configuration

Period of

idleness

New runway

configuration

Figure 4: Schematic representation of a runway configuration change at the beginning of period t

Therefore, an inherent trade-off is faced by the decision-maker: if efficiency can be improved by

changing runway configurations at a certain time of the day, this comes at the cost of a temporary

idleness of the runway system and consequent initial build-up of the arrival and departure queues.

The attractiveness of runway configuration changes naturally depends on the length τI of the period

of idleness.

Note, also, that the duration of the idleness resulting from a runway configuration change

may vary as a function of the “proximity” of the two consecutive runway configurations. For
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instance, simply activating an additional runway for arrivals or departures (such as activating

Runway 4R when 4L is already in use) will typically be less disruptive than a move to a very

different configuration that requires a change in the entire flow of arriving and departing aircraft.

For this reason, we denote by τRC1,RC2

I the time of idleness following the change from runway

configuration RC1 to runway configuration RC2. For all runway configurations RC, one obviously

has τRC,RCI = 0.

2.4.3 Weather and Wind Dynamics

Weather variability is modeled by means of a two-state Markov chain [14]. We denote by p (resp. q)

the transition probability from state VMC to state IMC (resp. from state IMC to state VMC).

Its transition diagram is shown in Figure 5 and its transition matrix P is given by:

P =

(VMC IMC

VMC 1− p p

IMC q 1− q

)

VMC IMC
-

�

p

q

-

�

1− p

1− q

Figure 5: Transition diagram of the weather Markov chain

Note that p and q may vary from one day of operations to another, as a function of perceived

meteorological conditions. We consider three types of days:

• “All-VMC days”, during which the system stays in VMC throughout the day: p = 0

• “All-IMC days’, during which the system stays in IMC throughout the day’: q = 0

• “VMC-IMC days”, during which meteorological conditions may vary through the course of

the day: p (resp. q) is estimated by its maximum likelihood estimator, i.e., the empirical

ratio of the number of transitions from VMC to IMC (resp., from IMC to VMC) over the

number of periods in VMC (resp. in IMC).

Similarly, wind dynamics are also modeled as a Markov chain. The transition probability from

State i to State j is estimated by its maximum likelihood estimators, i.e.,
nij

ni
, where nij (resp. ni)

designates the number of transitions from State i to State j (resp. the number of periods in State

i) [15].
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2.5 Cost Function

The control strategy aims at minimizing congestion costs, which are typically modeled as a non-

decreasing function of the queue length with non-decreasing marginal costs. In this paper, we

consider a quadratic cost function of the arrival and departure queue, since the expected total

delay scales quadratically with the number of queuing aircraft. Moreover, the costs associated with

arrival queues are weighted by a factor α. Arrival delays and departure delays may indeed be

expected to have different costs, as arriving aircraft can be more challenging and expensive to hold

in queue than departing aircraft. Therefore, a value of α larger than 1 might be used.

The cost function is written as follows:

α
T∑
t=1

a2t +
T∑
t=1

d2t . (3)

2.6 Dynamic Programming Formulation

As described in Section 2.3, we denote by RC(wst) the set of runway configurations that can

be selected in wind state wst and by ARCt,wct the maximal arrival rate that can be handled in

runway configuration RC and in weather conditions wc ∈ {VMC, IMC}. We denote the cost-to-

go function by Jt(at−1, dt−1, RCt−1, wct, wst), which represents the expected total cost of being in

state (at−1, dt−1, RCt−1, wct, wst) at the beginning of period t. The decision-maker minimizes the

sum of the expected congestion costs experienced at the end of period t, i.e., αE
(
a2t
)

+ E
(
d2t
)
, and

the future congestion costs from period t+ 1 onward, i.e., E (Jt+1 (at, dt, RCt, wct+1, wst+1)). The

dynamic programming equation is written as follows:

Jt(at−1, dt−1, RCt−1, wct, wst) = min
RCt∈RC(wst)
µat∈[0,ARCt,wct ]

(
αE
(
a2t
)

+ E
(
d2t
)

+ E (Jt+1 (at, dt, RCt, wct+1, wst+1))
)
,∀t = 1, ..., T (4)

JT+1(aT , dT , RCT , wcT+1, wsT+1) = 0 (5)

The arrival queue at at the end of period t depends on the number of scheduled arrivals xt

during period t, on the duration of the period of idleness τ
RCt−1,RCt

I , if any, on the arrival service

rate µat during period t and on the previous arrival queue at−1. Similarly, the departure queue dt

depends on the variables yt, τ
RCt−1,RCt

I , µdt and dt−1. A summary of the dependencies described in

Section 2.4 is provided below – full lines denote system evolution and dashed lines denote constraints

on the decisions.
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wst 99K RCt

RCt−1, RCt −→ τ
RCt−1,RCt

I

RCt, wct 99K µat , µ
d
t = ΦRCt,wct (µat )

xt, τ
RCt−1,RCt

I , wct, µ
a
t , at−1 −→ at

yt, τ
RCt−1,RCt

I , wct, µ
d
t , dt−1 −→ dt

3 Solution Algorithm

3.1 Experimental Setup

We consider the schedule at JFK of Friday, July 13, 2007, one of the busiest days in recent few

years. The airport operated in VMC throughout that day. For this reason, the probability p of

weather deterioration is set to 0 in this case. The schedule of landings and takeoffs at JFK is

obtained from the Aviation Performance Metrics (APM) database [8] and shown in Figure 6.

The Operational Throughput Envelopes of the 8 major runway configurations at JFK in VMC

are obtained from the PhD thesis of Simaiakis [19]. We categorize these 8 runway configurations

into 4 sets of two runway configurations each:

• Configurations with two arrival runways and one departure runway: 13L, 22L|13R and 31L, 31R|31L.

These configurations can achieve the largest arrival rates.

• Configurations with one arrival runway and two departure runways: 22L|22R, 31L and 4R|4L, 31L.

These configurations achieve the highest departure rates when few landings are operated.

• Configurations with two independent parallel runways: 13L|13R and 31R|31L. These con-

figurations achieve a higher departure rate than configurations with two arrival runways and

one departure runway when few landings are operated, since departures are less constrained

by aircraft landing and taxiing in. However, they achieve a lower throughput than configu-

rations with two arrival runways and one departure runway when a large number of landings

are operated.

• Configurations with two more closely spaced runways: 22L|22R and 4R|4L. These configu-

rations achieve the lowest service rates.

Figure 7 shows the Operational Throughput Envelope of each of these 8 runway configurations.

For each of the 4 sets described above, we plot the envelope of the configuration that achieves the

highest service rates with a full line and the envelope of the other configuration with a dashed

line. The same color is used for configurations belonging to the same set. In addition, each dot

represents the number of scheduled landings and takeoffs per 15-minute period. Note that the

scheduling levels exceed airport capacity during a large number of periods. This is likely to lead to
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significant flight delays. Note, also, that the proportion of arrivals and departures is highly variable

over the course of the day: as Figure 6 indicates, significantly more departures than arrivals are

scheduled in the morning, while the reverse is true in early afternoon.

Figure 6: Arrival and departure schedules at JFK on 07/13/2007

Figure 7: VMC Operational Throughput Envelopes of the main runway configurations at JFK

Unless otherwise specified, we implement this model using the same value of τRC1,RC2

I for all

pairs of runway configurations RC1 6= RC2. To simplify notation, we denote this time of idleness by
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τI in the remainder of the paper. This assumption can be easily modified to include differing values

of this parameter for different configuration pairs. We provide an example where this assumption

is relaxed in Section 4.1.

The value of the practical queue capacity, denoted by N (Section 2.4.1), is fixed at 30. Note that

a small value of N may lead to underestimation of the probabilities of large arrival and departure

queues. On the other hand, a large N will increase computational times, as the number of states

scales quadratically with N .

3.2 Exact Dynamic Programming Algorithm

First, the exact dynamic programming algorithm is implemented using the solution concept of

backward induction [2, 3]. In other words, the optimal policy in the final period, i.e., between

23:45 and 24:00, is computed for all possible states, i.e., for all possible arrival and departure queue

lengths that can be observed at 23:45, for all possible runway configurations that can be used in the

previous period, i.e., between 23:30 and 23:45, and for all possible weather and wind conditions.

This provides optimal costs in the final period as a function of the state of the system at the

beginning of the final period. This cost is then used to compute optimal policies in the second-to-

last period, as a function of the state of the system at 23:30. This process is then repeated until

the optimal policies for all periods have been derived.

The implementation of this algorithm can be performed off-line. The optimal policy can then be

applied throughout the day of operations. Nonetheless, the completion time of the exact dynamic

programming algorithm is equal to approximately 90 minutes on a laptop computer and thus

exceeds the time frame of actual decision-making by air traffic controllers. This might prevent it

from being applicable in practice if it needs to be updated on-line when new sources of information

become available. For this reason, we have implemented an approximate algorithm that accelerates

completion and consequently enables the algorithm to be updated on-line.

3.3 One-Step Look-Ahead Algorithm

The on-line implementation of the model presented in this paper requires very fast execution. In-

deed, at the beginning of each period, the selection of the runway configuration and of the arrival

and departure service rates must follow very quickly the observation of arrival and departure queue

lengths. For this reason, we implement in this section a one-step look-ahead algorithm based on

ex ante evaluation of the cost-to-go function, obtained from the exact dynamic programming algo-

rithm. The main advantage of this algorithm is that its on-line execution is almost instantaneous

and thus well suited to the actual problem faced by the decision-maker.

We consider, for a given day of operations, the off-line solution of the problem, which is computed

with the original model inputs, i.e., the original schedule of landings and takeoffs, the original

weather transition probabilities, etc. This provides, before the beginning of operations, the optimal
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policy for each period, denoted by
(
R̂Ct, µ̂at

)
, and the expected cost-to-go function, denoted by

Ĵ . If no significant update occurs during the day, then this optimal policy can be applied at the

beginning of any time period following the observation of queues and operating conditions. However,

this policy might no longer be optimal in the face of dynamic disturbances that may occur during

the day of operations. Examples of such disturbances include schedule updates, which might arise

from the occurrence of upstream delays in previous flight legs or the initiation of Ground Delay

Programs, or changes in weather forecasts that might impact future operations.

In the face of such disturbances, we implement a one-step look-ahead algorithm based on the

evaluation of the cost-to-go function Ĵ resulting from the original application of the exact dynamic

programming algorithm. In other words, we choose, at the beginning of period t, the policy that

minimizes expected total costs, assuming that costs from period t+ 1 onward are given by Ĵ . The

policy for the considered period, denoted by

(
∼
RCt,

∼
µat

)
, is therefore determined as follows [4]:

(
∼
RCt,

∼
µat

)
= arg min

RCt∈RC(wst)
µat∈[0,ARCt,wct ]

(
αE
(
a2t
)

+ E
(
d2t
)

+ E
(
Ĵt+1 (at, dt, RCt, wct+1, wst+1)

))
(6)

In order to test the performance of this approach, we simulate a schedule disturbance as follows:

at each period, we introduce a schedule perturbation randomly sampled from the integers within

ε of the original number of scheduled arrivals and departures. For instance, if 10 arrivals and 15

departures are originally scheduled during a given period, then we uniformly sample, for a value of

ε = 20%, the updated number of arrivals (resp. departures) from the five integers between 8 and

12 (resp. from the seven integers between 12 and 18). Note that the expected value of the total

number of flights in the updated schedule is identical to that of the original schedule. We then

compare the expected cost per stage resulting from the application of (a) the optimal policy with

the updated schedule, denoted by
(
RCt, µat

)
, which might be too computationally time-consuming

to be determined on-line, (b) the optimal policy with the original schedule,
(
R̂Ct, µ̂at

)
, which can

be obtained off-line and then applied during the course of the day and (c) the policy produced

by the one-step look-ahead algorithm (Equation 6),

(
∼
RCt,

∼
µat

)
, which can be computed almost

instantaneously on-line after the schedule update. Results are reported in Table 3, for different

values of ε. These results obviously depend on the particular realization of the random schedule

perturbation, but nonetheless provide insights into the robustness of the approach.

First, note that the optimal policy computed off-line with the original schedule,
(
R̂Ct, µ̂at

)
,

performs reasonably well, even after schedule updates. Even for the largest random schedule per-

turbations, this policy still results in expected congestion costs within 10% of the optimal congestion

costs. Moreover, the one-step look-ahead algorithm significantly improves the performance over the

original policy: the implementation of policy

(
∼
RCt,

∼
µat

)
results in expected congestion costs that
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Table 3: Comparison of available policies before and after the one-step look-ahead algorithm to
optimal policies, for different values of ε

Schedule Considered Updated Schedule Original Schedule Updated Schedule

Algorithm Exact Exact One-Step Look-Ahead

Policy
(
RCt, µat

) (
R̂Ct, µ̂at

) (
∼
RCt,

∼
µat

)
Available on-line? No Yes Yes

ε = 10% Baseline +3.27% +0.73%
ε = 20% Baseline +3.39% +0.77%
ε = 30% Baseline +5.74% +1.43%
ε = 40% Baseline +6.06% +1.62%
ε = 50% Baseline +8.43% +2.81%

exceed minimal costs by an order of only 1% to 2%, for different levels of schedule perturbations.

Thus, the one-step look-ahead algorithm offers fast and accurate performance for this problem:

the combination of the cost-to-go evaluation, which can be done off-line with the original schedule of

flights and, more broadly, with the original model inputs, and a single policy iteration (Equation 6)

results in a close-to-optimal policy. This approximation scheme can thus be used as a flexible

on-line decision-making tool to help minimize congestion costs by dynamically controlling runway

configurations and arrival and departure service rates using the latest information available to

decision-makers.

4 Results

We present in this section the results of the dynamic programming algorithm. Section 4.1 char-

acterizes the optimal control of runway configurations and arrival and departure service rates.

Section 4.2 shows the result of this control on expected arrival and departure queues and their

sensitivity to several model parameters. Then, we quantify the operational benefits resulting from

the implementation of the control by comparing, in Section 4.3, the optimal policy to heuristic

policies. Last, we present how the control of arrival and departure service rates introduced in this

paper can be used at the strategic level in models of airport congestion. To this end, we compare,

in Section 4.4, the optimal control to baseline policies, where no control is exercised, and show

that the control of arrival and departure service rates can also substantially improve the realism of

macroscopic models of airport congestion.

4.1 Optimal Policies and Frequency of Decisions

The optimal policy derived from the dynamic programming algorithm is a function that determines

the runway configuration and the arrival and departure service rates at each period of the day and
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in any state of the system. Figure 8 represents the contours of the optimal arrival rate µat and the

optimal runway configuration RCt for one specific period of the day t, at 15:30, for a value of τI = 5

minutes, if observed weather conditions are VMC and if the airport operates in Wind State 1 (i.e.,

all runway configurations can be used), as a function of the arrival and departure queue lengths that

are observed at the beginning of the time window. Note that the departure rate is not represented

here, but it is uniquely determined by the VMC Operational Throughput Envelope of the selected

runway configuration. During the period considered, i.e., between 15:30 and 15:45, 9 landings

and 6 takeoffs were scheduled, and, more generally, more arrivals than departures were scheduled

between 15:00 and 16:00 (Figure 6). Two cases are considered: Figure 8a (resp. Figure 8b) shows

the optimal policy at 15:30 when the airport operated in the previous period, i.e., between 15:15

and 15:30, in runway configuration 13L, 22L|13R (resp. in runway configuration 22L|22R, 31L).

(a) RCt−1 = 13L, 22L|13R (b) RCt−1 = 22L|22R, 31L

Figure 8: Optimal runway configuration and arrival rate at 15:30 (wct = VMC, wst = 1)

Several observations can be made on the optimal policy. First, the arrival rate is typically non-

decreasing as a function of the length of the arrival queue and non-increasing as a function of the

length of the departure queue, with the exceptions of some “boundary effects” when queue lengths

approach the practical queue capacity N . In other words, the larger the arrival queue, the more

available capacity should be allocated to arriving aircraft. Moreover, the optimal policy depends on

the runway configuration in use. Indeed, when the airport operates in configuration 13L, 22L|13R,

then the optimal policy is to stay in this configuration, which allocates two runways to arrivals and

one runway to departures, in order to best operate the larger number of arriving aircraft during

the considered period. In contrast, if the airport operates in configuration 22L|22R, 31L, then the

optimal policy may be either to switch to configuration 13L, 22L|13R if the departure queue is

18



small enough, or to stay in configuration 22L|22R, 31L otherwise. In addition, whereas the selected

arrival rate increases gradually as a function of the arrival queue length in the case where RCt−1 =

13L, 22L|13R (Figure 8a), it increases discontinuously from 13 to 16 when RCt−1 = 22L|22R, 31L

(Figure 8b). Indeed, as the arrival queue becomes large enough, the decision-maker selects the

largest arrival rate that can be achieved in the runway configuration in use (13 in this case), and

the optimal policy then becomes invariant as the arrival queue length increases. However, when

the arrival queue exceeds a certain threshold, then it might become beneficial to switch to another

configuration, in this case to configuration 13L, 22L|13R, if the operational benefits associated

with the switch become large enough to offset the costs associated with the time period of idleness

following the runway configuration change.

Figure 9 represents the frequency of use of each of the four considered categories of runway

configurations defined in Section 2.1 for each of the 72 periods of a day of operations and for

different values of τI , i.e., different lengths of the time period of idleness following a runway con-

figuration change. As expected, the frequency of use of these different configurations depends on

the throughput they achieve (Figure 7). Since the three-runway configurations achieve the high-

est service rates, they are the most frequently used configurations. In contrast, the two-runway

configurations are mostly used in adverse wind conditions when the airport can only operate on

a small subset of runways. Nonetheless, configurations with two independent parallel runways are

used much more frequently than configurations with two more closely parallel runways, which is

due to the significant difference in the capacity of these configurations.

Moreover, the exact timing of use of the different configurations depends on the arrival and

departure schedules as well as the evolution of the system through the day of operations. Impor-

tantly, note that no runway configuration is used 100% of the time at any period of the day. This

indicates that the stochasticity of the evolution of the system has an impact on the optimal control,

as suggested by Figure 8. Last, the use of different runway configurations depends substantially on

the value of the parameter τI . Indeed, in the case where τI = 0, runway configuration changes are

very frequent to make the best possible use of available capacity. For larger values of τI , however,

the cost associated with the idleness of the runway system is more likely to exceed the operational

benefits associated with switching from one configuration to another and consequently runway con-

figuration changes become less frequent. For instance, if τI = 0, the decision-maker should operate,

whenever possible, in a configuration with two departure runways between 13:00 and 14:00 to best

serve the departure peak at that time (see Figure 6). As τI increases, decisions trade off congestion

costs with increasing switching costs and therefore depend on the observed number of queuing

aircraft on the ground and in the air. As a result, the frequency of a switch between 13:00 and

14:00 becomes smaller. When τI is equal to 10 minutes, then it is almost always optimal to stay in

a configuration with two arrival runways and one departure runway for the entire period between

11:45 and 17:00.
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(a) τI = 0 minute (b) τI = 2 minutes

(c) τI = 4 minutes (d) τI = 10 minutes

Figure 9: Frequency of use of each runway configuration for α = 1 and variable τI

As mentioned in Section 2.4.2, the modeling framework developed in this paper enables us to

introduce differentiated costs of runway configurations changes as a function of the proximity of

configurations. We compare in Figure 10 the use of runway configurations when duration of idleness

following a runway configuration change, τI , is uniform across runway configuration changes (Fig-

ure 10a) to the case where the values of τI vary with the runway configuration change considered

(Figure 10b). More specifically, we assume in Figure 10b values of τI equal to (a) 1 minute if the

switch merely disturbs operations by simply adding or removing a third runway (e.g., from config-

uration 31L, 31R|31L to configuration 31R|31L), (b) 5 minutes if the switch involves a 90-degree

reorientation of the flow of aircraft (e.g., from configuration 22L|22R, 31L to configuration 31R|31L)

and (c) 10 minutes if the switch involves a 180-degree reorientation of the flow of aircraft (e.g., from

configuration 31L, 31R|31L to configuration 13L|13R). The value of τI considered in Figure 10a,

equal to 3 minutes, is approximately equal to the average value of τI in the differentiated case, so

the differences between Figures 10a and 10b essentially come from differences in the distribution of
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τI across runway configuration changes. As expected, differentiated costs of runway configuration

changes can in fact impact the optimal selection of runway configurations through the course of the

day. For instance, it may be optimal to operate between 13:00 and 14:00 in a configuration with

two independent parallel runways to best serve the larger number of takeoffs during this period,

even though the departure throughput could be increased by using a configuration with two de-

parture runways. This comes from the lower costs of switching from configuration 13L, 22L|13R to

configuration 13L|13R or from configuration 31L, 31R|31L to configuration 31R|31L than the costs

of switching to configuration 22L|22R, 31L or to configuration 4R|4L, 31L. In this case, it may be

optimal to increase moderately the departure throughput by using a “closer” configuration than

to increase the departure throughput to a greater extent at a larger operational cost. The model

implemented in this paper allows flexible calibration by airport operators of these operational costs

associated with runway configuration changes.

(a) τI = 3 minutes (b) Differentiated τRC1,RC2
I

Figure 10: Frequency of use of each runway configuration with uniform and differentiated values
of τI

In addition to the selection of runway configurations, as shown in Figures 9 and 10, the model

introduced in this paper controls the arrival and departure service rates at each period of the day.

These are represented in Table 4 for six different periods. Note that variations in selected arrival

and departure service rates, for a given runway configuration, are solely motivated by differences

in prior queue evolution, and depend neither on the runway configuration previously in use nor

on weather and wind conditions. For some periods of the day, e.g., at 6:45, 13:30 and 15:15, this

decision weakly depends on the state of the system. In these cases, the main control exercised is

the selection of the runway configuration, primarily determined by previous runway configurations

and wind-related constraints, but the optimal balance of arrivals and departures does not vary

substantially from one observation to another. For instance, at 15:15, the decision-maker should

most frequently choose the highest arrival rate available, while he should generally select an arrival
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rate equal to 9 or 10 landings per 15-minute period at 6:45 and an arrival rate equal to 5 or 6 landings

per 15-minute period at 13:30. In some other cases, however, the optimal balance of arrivals and

departure is highly variable and consequently depends on observed extents of congestion at the

time of the decision (e.g., at 17:45, 18:45 and 21:30). In these latter cases, both the optimal runway

configuration and the optimal arrival and departure service rates might depend on prior evolution

of the system.

Table 4: Policy frequency for six different periods of the day

Policy Time t

RCt µat µdt 6:45 13:30 15:15 17:45 18:45 21:30

13L, 22L|13R

16 8.0 – – 41% 1% 2% –
14 9.0 – – – 2% 4% –
11 9.9 – – – 5% 6% 1%
10 10.1 – – – 11% 8% 2%
9 10.2 – 3% – 6% 2% 3%
6 10.4 – 25% – – – 1%
5 10.5 – 8% – – – 1%

31L, 31R|31L

16 5.2 – – 46% 3% 4% –
15 5.9 – – 6% – – –
7 10.7 – 6% – 2% 1% 1%
6 11.0 – 42% – 1% – 1%

22L|22R, 31L

13 8.8 – – – 6% 11% 2%
12 9.4 – – – 3% 4% 2%
10 10.5 12% – – 4% 6% 4%
9 11.0 38% 1% – 11% 10% 11%
7 11.7 – 1% – 11% 4% 7%
5 12.3 – 3% – – – 2%
4 12.6 – – – – – 7%

4R|4L, 31L

13 8.2 – – – 4% 9% 1%
10 10.0 21% – – 4% 6% 5%
6 11.6 – – – 3% 1% 2%
4 12.4 – – – – – 6%
3 12.7 – – – – – 3%

31R|31L
9 10.5 18% – – 1% 1% 3%
4 12.1 – – – – – 5%

13L|13R
8 10.5 4% – – – – –
7 11.1 – – – 1% – 3%

These results demonstrate the path-dependency of the control of runway configurations and

arrival and departure service rates introduced in this paper. At each period, the optimal policy

depends on the state of the system at the time of the decision (Figure 8), which itself depends on

previous decisions and on the prior evolution of the system. This includes, first, some deterministic
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components, such as the runway configuration in use. It also includes some exogenous stochastic

components, such as the evolution of weather and wind conditions. For instance, configuration

4L|4L, 31L achieves a slightly lower departure throughput than configuration 22L|22R, 31L for any

value of the arrival rate. Nonetheless, it might be used when the balance of arrivals and departures

requires the use of a runway configuration with two arrival runways and one departure runway

and when strong winds from the North prevent runways 22L and 22R from being used. Last,

and perhaps most importantly, optimal policies depend on endogenous stochastic components,

such as the length of the arrival and departure queues. These observations depend on previous

decisions as well as the stochastic evolution of the system. This state stochasticity gives rise to

some variability in the optimal control at any period of the day, as indicated in Figures 9 and 10

and in Table 4: both the selection of different runway configurations and the control of arrival

and departure service rates depend on prior system evolution. This underscores the importance of

considering queue stochasticity within the decision-making framework and its impact on optimal

decisions.

4.2 Sensitivity of Arrival and Departure Queues

The control of runway configurations and arrival and departure service rates has a direct effect on

arrival and departure queues. Figure 11 shows optimal expected arrival (Figure 11a) and departure

(Figure 11b) queue lengths for different values of the weight on the cost of arrival queue α and for

a duration of idleness following runway configuration changes equal to τI = 5 minutes. In other

words, it shows the effect of an increase of the relative cost of arrival queues, compared to departure

queues, on expected arrival and departure queue lengths. As expected, larger values of α lead to

the selection of policies that increase arrival throughput at the expense of the departure throughput

and, therefore to lower expected arrival queue lengths and, reversely, to larger expected departure

queue lengths. Note that arrival queues seem more sensitive to variations in α than departure

queues: variations in α from 1 to 2 induce changes in peak expected arrival queue length of the

order of 2 aircraft in queue, i.e., relative variations of over 20%, and changes in peak expected

departure queue length of the order of 1 aircraft in queue, i.e., relative variations of approximately

5%. This difference is likely due to the fact that the slope of the Operational Throughput Envelope

at JFK is lower than 1 (Figure 7), so variations in arrival rates induce variations in departure rates

of a smaller magnitude.

Figure 12 shows the sensitivity of expected arrival (Figure 12a) and departure (Figure 12b)

queues to the value of τI . Expected arrival and departure queues naturally vary with the duration

of idleness following a runway configuration change: as τI increases, operations become less efficient

and thus congestion costs become larger. At peak hours, the difference might be up to 1 aircraft

in the arrival queue and to 2 aircraft in the departure queue. These differences naturally translate

into different optimal expected congestion costs: Table 5 indicates that the total expected costs
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(a) Arrival queue (b) Departure queue

Figure 11: Sensitivity of expected arrival and departure queues to α (τI = 5 minutes)

increase by over 20% when τI increases from 0 minute to 15 minutes. Therefore, the efficiency

with which airport operators manage to change runway configurations has a significant impact on

expected airport congestion costs.

(a) Arrival queue (b) Departure queue

Figure 12: Sensitivity of expected arrival and departure queues to τI (α = 1)
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Table 5: Expected total cost for different values of τI

τI Expected total cost

0 minute Baseline
5 minutes +9.73%
10 minutes +15.30%
15 minutes +21.31%

4.3 Comparison of Optimal Control to Heuristic Policies

We now compare the optimal control of runway configurations and of arrival and departure service

rates to two distinct heuristic policies. These comparisons provide estimates of the congestion cost

savings that might result from the implementation of the model developed in this paper as a tool

for tactical decision-making.

The two heuristics we consider primarily aim at adjusting the arrival rate as a function of arrival

demand. The departure rate is, in turn, determined by the Operational Throughput Envelope of

the selected runway configuration. In other words, these heuristics tend to privilege arrivals over

departures by mostly basing decisions on arrival demand. This is motivated by the fact that,

at JFK, the departure rate varies slightly with the arrival rate. Indeed, as previously discussed,

the slope of the Operational Throughput Envelope of the main runway configurations at JFK is

lower than 1 (Figure 7). Therefore, increasing the arrival rate to match arrival demand induces

a relatively small loss in departure throughput. Moreover, this decision might be motivated by

practical reasons as well, since it is more challenging operationally to hold arriving aircraft in

queue in the air than to hold departing aircraft in queue on the ground.

The first heuristic assumes no cost of changing runway configurations. At the beginning of

each period, the decision-maker computes the effective arrival demand, denoted by adt and defined

as the expected number of aircraft that will be ready for landing in the period. It is simply

equal to the sum of the arrival queue at the beginning of period t, i.e., at−1, and the expected

number of aircraft that will join the arrival queue in period t, i.e., xt. He then attempts to match

arrival demand by selecting an arrival rate equal to the effective arrival demand, if possible. If

the maximal arrival rate of each of the runway configurations that can be used under observed

wind conditions is smaller than the effective arrival demand, then he selects the largest arrival rate

that can be possibly chosen. He then decides to operate during the following period in the runway

configuration that maximizes the expected departure throughput for the selected arrival rate. This

heuristic is presented in Algorithm 1.

The second heuristic relies on similar dynamics except that an extensive cost of switching

runway configurations is assumed. The decision-maker does not change runway configurations

unless he has to do so, because of changing wind conditions. If the current runway configuration

can still be used for the next period, then he chooses the arrival rate that matches the effective
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Algorithm 1 Heuristic 1: Arrival priority and no cost of runway configuration changes

for t = 1, ..., T do
for at−1 do

• Compute effective arrival demand: adt = at−1 + xt

for wct, wst do
for rc ∈ RC(wst) do

• Define candidate arrival rate with rc: art(rc) = min (Arc,wct , adt)

end for

• Determine the set of candidate runway configurations RCart(wst) ⊂ RC(wst) that minimize
the following quantity: |adt − art(rc)| and define new arrival rate µat as the corresponding
value of art(rc), rc ∈ RCart(wst)
• Choose runway configuration RCt = arg maxrc∈RCart (wst) {Φrc,wct (µat )}

• Define new departure rate: µdt = ΦRCt,wct (µat )

end for
end for

end for

arrival demand as closely as possible and the departure rate is subsequently determined by the

Operational Throughput Envelope of the runway configuration. If, however, the current runway

configuration can no longer be used, then he selects the policy determined by the first heuristic.

This heuristic is presented in Algorithm 2.

Table 6 reports the relative difference between the optimal expected cost per stage and the

expected cost per stage resulting from the application of each of these two heuristics, for distinct

values of the duration of idleness τI . First, note that the performance of the heuristics depends on

the value of the parameter τI : Heuristic 2 performs relatively well if τI = 10 minutes, while Heuristic

1 performs better if τI = 0, which is consistent with the design of these heuristics. Moreover, the

optimal control results in substantial cost savings, as expected congestion costs can be reduced by

as much as 15% to 20% compared to the best of both heuristics in each case.

Table 6: Relative error of heuristics

Algorithm τI = 0 minute τI = 5 minute τI = 10 minutes

Exact Baseline Baseline Baseline

Heuristic 1 +17.65% +34.77% +70.94%
Heuristic 2 +36.54% +26.08% +22.19%

The comparison of the optimal control to heuristics suggests that the joint control of runway

configurations and arrival and departure service rates can improve substantially the efficiency of

airport operations. The model presented in this paper provides a systematic decision-making
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Algorithm 2 Heuristic 2: Arrival priority and extensive cost of runway configuration changes

for t = 1, ..., T do
for RCt−1 do

• Determine the set of wind states WSRCt−1 in which RCt−1 can be feasibly used

for wst ∈ WSRCt−1 do

• Choose same runway configuration: RCt = RCt−1

for at−1, wct do

• Compute effective arrival demand: adt = at−1 + xt

• Define new arrival rate: µat = min (ARCt,wct , adt)

• Define new departure rate: µdt = ΦRCt,wct (µat )

end for
end for
for wst /∈ WSRCt−1 do

• Choose policy from Heuristic 1 in all states

end for
end for

end for

tool that exercises this control dynamically to minimize airport congestion costs under realistic

conditions of operational uncertainty. In turn, the implementation of this control can provide

significant operational benefits to the system, which we estimate at 15% to 20% of congestion

costs, compared to realistic heuristics.

This improvement in airport efficiency represents significant cost savings for airlines, passengers

and society. As mentioned in the introduction, the annual delay costs were estimated at over $30

billion for the year 2007 [1]. Moreover, mismatches between demand and capacity are responsible

for an estimated 50% to 75% of all flight delays experienced in the United States [6]. Therefore, a

reduction in queuing delays of the order of 15% is likely to result in annual savings of the order of $2

billion to $3 billion. Given the disproportionate distribution of delays across airports in the country

and the propagation of these delays through the National Aviation System, the implementation of

the control developed in this paper at some of the busiest airports in the United States is expected

to capture a significant share of these potential delay savings. This would, in turn, save several

hundreds of millions of dollars in annual delay costs to airlines and to passengers.

4.4 Use of the Control of Service Rates in Models of Airport Congestion

The control of runway configurations and arrival and departure service rates developed and im-

plemented in this paper, in addition to providing a congestion mitigation tool at the operational

level, can also be used at the strategic level to improve predictive models of airport congestion by
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integrating the control of arrival and departure service rates. These models of airport congestion,

which quantify the relationships between flight schedules, airport capacity and flight delays, typi-

cally consider exogenous values of arrival and departure service rates and thus exercise no control of

runway configurations and arrival and departure service rates, or do so manually and not system-

atically [13, 14, 16]. The limitation of this approach lies in the fact that these service rates are not

known in advance but instead dynamically controlled through the course of the day as a function of

observed extents of congestion at the airports. The optimization of this control at the operational

level, as implemented in this paper, provides a realistic way to select the arrival and departure

service rates through the course of the day in models of airport congestion. The combination of

this control to the determination of the Operational Throughput Envelope of the different runway

configurations at one airport, to the stochasticity of queue dynamics and to the stochasticity of

operating conditions therefore provides a new framework to model flight delays that integrates air-

port operational procedures to airport strategic planning. In turn, the model and the results from

this paper can be used to improve the realism of macroscopic models of airport congestion, which

can then be used in airline scheduling algorithms, in the design of other congestion mitigation tools

and strategies, etc.

In order to illustrate this point, we compare the optimal control of runway configurations and

arrival and departure service rates to baseline policies, where no control is exercised and where

the arrival and departure service rates are kept constant throughout the day of operations. Three

baseline policies are considered: (a) Balanced Operations, where the airport serves arrivals and

departures at the same rate, (b) Arrival Priority, where the highest values of arrival throughput are

realized and (c) Departure Priority, where the highest values of departure throughput are realized.

Corresponding average service rates are provided in Table 7, and are averaged out all runway

configurations and traffic mix conditions [19]. We also add a fourth scenario, where the decision-

maker minimizes congestion costs (Equation 3) by choosing one of the three baseline policies shown

in Table 7 at each period, as a function of the observed arrival and departure queue lengths. This

scenario, which we call Baseline Control, aims at simulating the most basic form of control that

can be exercised. These baseline policies aim at replicating typical choices made in macroscopic

models of airport congestion.

Table 7: Definition of baseline policies [19]

Baseline Policy Arrival Capacity Departure Capacity Total Capacity

Balanced Operations 10 10 20
Arrival Priority 16 6 22

Departure Priority 6 12 18

Figure 13 compares the expected arrival (Figure 13a) and departure (Figure 13b) queues re-

sulting from the application of the control presented in this paper, on the one hand, and from these
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four scenarios, on the other hand. Note, first, that arrival and departure queues are extremely sen-

sitive to arrival and departure service rates: the range between queues resulting from two extreme

policies, namely arrival priority and departure priority, is extremely large. Moreover, the optimal

control results in significantly smaller expected arrival and departure queues than in the Balanced

Operations scenario, i.e., when arrivals and departures are served with identical service rates. Ex-

ercising the baseline control, i.e., selecting at each period one of the three baseline policies, results

in smaller congestion costs than balancing operations, but still significantly larger ones than when

the optimal policy is applied. Even for large values of τI , the optimal policy results in congestion

costs that are 25% smaller than when the baseline control is applied (Table 8). Last, note that

the effects of the control on arrival queues are more important than those on departure queues.

This primarily comes from the fact that increasing by one unit the arrival rate results, at JFK, in

lowering the departure rate by less than one unit (Figure 7).

(a) Arrival queue (b) Departure queue

Figure 13: Comparison of optimal arrival and departure queues to baseline policies

Table 8: Comparison of optimal congestion costs to baseline policies

Control τI = 0 minute τI = 5 minute τI = 10 minutes

Optimal Control Baseline Baseline Baseline
Balanced Operations +80.75% +64.72% +56.76%

Baseline Control +45.17% +32.29% +25.90%

These comparisons show that estimated arrival and departure queues are very sensitive to the

selection of arrival and departure service rates. In turn, the expected arrival and departure queue

lengths obtained from the implementation of the control introduced in this paper differ significantly
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from queues obtained by exogenously estimating the arrival and departure service rates, as it is

typically done in macroscopic models of airport congestion. This suggests that the approach and the

results from this paper can also be applied to control arrival and departure service rates in dynamic

models of airport congestion at the strategic level, which subsequently improves the predictive power

of these modeling methodologies.

5 Conclusion

In this paper, we have presented the first decision-making framework that dynamically controls

the selection of runway configurations and of the arrival and departure service rates at a major

airport while taking into account the stochasticity of arrival and departures queues and of airport

operations. This model solves the problem of allocating airport capacity to arriving and departing

aircraft under uncertain operating conditions. We have introduced an efficient dynamic program-

ming formulation that minimizes airport congestion costs and embeds a realistic stochastic model of

queue dynamics as well as weather and wind-related uncertainty. The exact dynamic programming

algorithm has been implemented and shown to yield optimal policies within reasonable computa-

tional times. A one-step look-ahead algorithm that considerably speeds up completion has been

proved to produce near-optimal policies. This fast approximate algorithm enables the on-line im-

plementation of the model presented in this paper, which might be critical when new information

(e.g., schedule updates) becomes available through the course of the day.

Comparisons of optimal policies to heuristic policies suggest that queuing costs might be sig-

nificantly reduced by exercising a dynamic control of runway configurations and of arrival and

departure service rates at a major airport. Congestion cost savings are estimated at 15% to 20%,

which represents annual savings of the order of $1 billion. Moreover, it has been shown that deci-

sions are path-dependent in the sense that they depend on the stochastic evolution of the system,

and, in particular, on the stochastic evolution of arrival and departures queues through the course

of a day of operations. Results also emphasize the importance of involving all stakeholders to keep

transitions between successive runway configurations as smooth as possible: higher efficiency in

operating runway configuration switches results in smaller congestion costs.

The model and the algorithms presented in this paper provide an effective decision-making tool

to mitigate airport congestion at the tactical level, whose implementation may provide substantial

operational benefits to airport stakeholders. Moreover, this approach provides a new framework

to control arrival and departure service rates in macroscopic models of airport congestion in the

face of operational uncertainty and variability, which subsequently improves the realism of airport

congestion modeling methodologies.
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