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Abstract

The present paper looks into the problem of optimizing the loading of a set of containers

and pallets into cargo aircraft serving multiple airports. Due to the pickup and delivery

operations occurring at intermediate airports, this problem is simultaneously a weight and

balance problem and a sequencing problem. Our objective is to minimize fuel and handling

operations costs. This problem is shown to be NP-hard. We resort to a mixed integer

linear program. On the basis of a professional partner’s real-world data, TNT Airways, we

perform numerical experiments using a standard B&C library. This approach yields better

solutions than traditional manual planning, which results in substantial cost savings.

Keywords: OR in airlines, Assignment problem, Fuel consumption, Weight and balance,

Sequencing problem, ILP

1. Introduction

In the Airline Container Loading Problem with Pickup and Delivery (ACLPPD), a

set of containers and pallets, known as Unit Load Devices (ULD), must be loaded into a

compartmentalized cargo aircraft. We take into account that pickup & delivery operations

take place at different airports during the trip. The loading task is illustrated in Figure 1.

We propose an exact solution approach relying on a mixed integer linear program to find

the optimal assignment of the ULDs.

While air cargo represents but 10% of world trade volume, it is in excess of $6.4 trillion

par annum, which roughly amounts to 35% of world trade value (IATA (2013a)). Air

cargo transportation thus plays a highly significant economic role. Optimizing loading

assignment on board is critical to airlines for several reasons. First and foremost, correct
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Figure 1: a ULD being loaded on board through the main deck side cargo door (left),through the nose
door (middle), and through a lower deck side cargo door (right).

loading conditions safety. Inappropriate loading, on the other hand, can cause a lot of

damage. The aircraft, the freight or even the crew could be at risk. The present research,

therefore, models a wide set of constraints for operators to reckon with on a daily basis.

This model applies to all aircraft and loads complying with international standards. Taking

into account the same constraints as Limbourg et al. (2012), we adapt them to the case of a

sequence of routes, called legs while considering the additional case of hazardous products

and oversized ULDs. Second, optimal loading has a positive impact on aerodynamics, thus

making for less fuel consumption, i.e. reduced cost and environmental impact. This issue is

crucial for airlines, which are hit hard by rising oil prices and increasing pressure to reduce

their carbon dioxide emissions. The present research analyzes fuel and handling operations

in order to minimize costs. Handling these two first requirements is done through a proper

distribution of the ULD weights inside the aircraft. This part is a weight and balance

problem. The third reason why optimal loading is so important for airlines is that managing

the operations on the ground is also a challenge, especially when the trip includes several

legs with P&D operations. Reducing the number of handling operations saves time. Time

saved means reduced labor costs per flight. It also allows shorter turnaround time, i.e. the

time that elapses between the moment the plane lands on the runway and when it takes off

again, and hence reduced airport fees. Time saved might also be used for other valuable

operations. Optimizing the planning of the loading is also crucial and constitutes another

reason why to consider this problem. Indeed, the loadmaster must build a planning within

a very tight time window while this requires, by hand, a lot of time. With an interactive

computerized efficient tool, he would be able to consider different alternatives and to select

the best solution with respect to his experience and the real conditions faced on the ground.

In this context, the problem no longer consists merely, as in Limbourg et al. (2012),

in positioning ULDs to reach a proper equilibrium but also in defining the sequence of
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unloading and loading operations at airports. As there is only one path between any ULD

and the exit door, this path must be free to unload the ULD. The task is to minimize, at

each airport, the number of ULDs in transit to be unloaded in order to have access to ULDs

reaching their delivery point. The same question arises when pickup occurs. The problem

is even more complex when, as it sometimes turns out, several doors can be used. The

cost of these handling operations is the second element of the new objective function we

propose. It is important to notice that we now face two conflicting objectives: optimizing

the assignments on board for fuel and for the ground operations. Our contribution is to

propose an exact approach to solve simultaneously both the weight and balance problem

over a multi-leg trip and the sequencing problems associated to the pickups and deliveries.

We resort to a mixed integer linear program where the objective is to minimize both costs.

Currently, this very complex problem (NP-hard) is still essentially solved manually

on the basis of best practices. As load planners have very tight time windows to choose

assignments, they mainly focus on finding a feasible and reasonable solution. As a rule,

they do not incorporate P&D operations in the planning process. A common way to

handle several legs is indeed to plan each leg independently. Accordingly, almost the entire

cargo may be unloaded at intermediate airports and the ULDs that have not reached

final destinations are reloaded afterwards, which is the worst possible scenario for ground

operations. We show, on the basis of our first results on real data provided by industrial

partners, that our approach allows significant savings.

The remainder of this paper is organized as follows. Section 2 outlines the problem and

the assumptions involved. Related literature and contributions are presented in Section 3.

Section 4 describes in more details the problem and provides the mathematical formulation

of the model. Section 5 gives information on the theoretical complexity of the problem while

Section 6 illustrates the performance of the approach through numerical results. Finally,

some conclusions are drawn.

2. Problem summary and assumptions

The ACLPPD can be informally summarized as:
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Figure 2: illustration of the structure of an aircraft

min Fuel and loading operations costs on the entire trip (global optimization)

s.t. Pickup & delivery sequences are feasible

Customer demand is satisfied (each ULD is loaded)

Each ULD fits in an aircraft position

A position accepts only one ULD

Some positions are overlapping and cannot be used simultaneously

Longitudinal stability is within certified limits (ZFW,TOW,LW)

Lateral stability is within certified limits

Weight per position is below the certified limit

Combined weight load limits are set

Cumulative weight load limits are set

Regulations for hazardous goods are fulfilled

Oversized ULDs are managed

The decision variables are the location of each ULD inside the aircraft. The constraints

are described in detail in Section 4.3. We make the following main assumptions. A cargo

aircraft has to deliver goods to several airports. The flight plan is supposed to be known

beforehand, which means that these airports as well as the order in which they will be

visited are known. We also know all the containers and pallets (ULDs) to be delivered.

For each ULD, we know its size, shape, weight, respective origin and destination. We

follow international standards for the description of the ULDs. Full details on the coding

standards can be found in the IATA ULD Regulations (ULDR) (IATA (2013b)). A cargo

aircraft generally contains multiple decks with multiple configurations of positions for each.

A position is simply a particular aircraft space accommodating exactly one ULD. The

location of each position as well as all ULDs that fit into that position are also known.

The location of the different doors is also given. A cargo aircraft has generally one side

cargo door on the main deck and one for each of the three compartments of the lower
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deck. In addition, a nose door is sometimes available for the main deck. An example of

cargo aircraft structure is illustrated on Figure 2. The focus of this research is on cargo

transportation. While the central ideas remain the same and extensions of our approach

could be considered, neither passenger transportation nor transportation of goods in the

lower deck of passenger aircraft are covered in this paper.

3. Related literature and contributions

This problem is an Assignment Problem (AP) referred to in the literature as belonging

to the family of Weight & Balance Problems. The scientific literature on aircraft cargo

load planning is not extensive but still contains a number of papers. As in Limbourg

et al. (2012), we classify these papers into three main categories. First, several papers

consider how to optimize the loading of freight inside ULDs (Chan and Kumar (2006);

Chan et al. (2006); Yan et al. (2008); Li et al. (2009); Wu (2010); Tang and Chang (2010);

Tang (2011)) independently of the aircraft. This part essentially deals with Bin Packing

Problems (BPP). A second important question is how to select the ULDs or items to be

loaded in an aircraft or a fleet of aircraft; i.e. Knapsack Problems (KP). Papers on this

subject cover military (Ng (1992); Heidelberg et al. (1998); Guèret et al. (2003); Kaluzny

and Shaw (2009); Nance et al. (2011)) and commercial applications (Mongeau and Bès

(2003); Fok and Chun (August 14-17, 2004); Tian et al. (2009); Verstichel et al. (2011)).

Finally, some authors, like ourselves, optimize the location of ULDs in an aircraft. In this

domain, the literature can be subdivided according to two approaches: Bin Packing or

Assignment. In the BPP approaches (see e.g. Amiouny et al. (1992); Heidelberg et al.

(1998); Mathur (1998); Guèret et al. (2003); Nance et al. (2011)), the authors attempt

to fill the aircraft continuously by excluding empty spaces between the items while in

the AP approaches (see e.g. Limbourg et al. (2012); Mongeau and Bès (2003); Verstichel

et al. (2011)), they try to allocate ULDs into predefined standardized positions. These

three families, however, are not exhaustive and some papers fall in between categories.

This literature also varies on at least four other dimensions: the precise definition of the

objective function, the nature of the shipments, the constraints taken into account, and

the solution algorithm (exact methods or heuristics).

Related problems deal with the loading of containers in trucks, trains or ships. All

these problems are combinatorial optimization problems which have to satisfy, several and

sometimes similar loading constraints. Among these, the more distant is the loading of a

truck since there are no predefined positions for the containers. The Truck Loading Problem

5



(TLP) is not an Assignment Problem but it fits under the more general Container Loading

Problem (CLP) (Bortfeldt and Wäscher (2013)) which includes the Bin Packing Problems.

Basically, in the CLP, a series of 3D boxes has to be stacked into a 3D container without

overlapping. When the truck has to deliver goods at several destinations, the problem is

sometimes referred to as the Multi-Drop Container Loading Problem (MDCLP). In this

case, the minimization of the number of handling operations is also a major preoccupation.

Among the most recent papers, we can cite the works of Pan et al. (2011) and Altarazi

(2013).

The Train and Ship Loading Problems are closer to the definition of our problem. In-

deed, for the loading of a ship, as stated e.g. in Dubrovsky et al. (2002); Ambrosino et al.

(2010); Øvstebø et al. (2011), or of a train, as stated e.g. in Bostel and Dejax (1998);

Corry and Kozan (2006); Bruns and Knust (2011); Ambrosino et al. (2011), available loca-

tions for containers are also predefined. In addition, as in our problem, the sequencing of

loading/unloading operations also determines the ship or train turnaround time. For these

specific carriers, Avriel et al. (1998); Imai et al. (2006); Li et al. (2008); Øvstebø et al. (2011)

suggest keeping number of handling operations to the minimum. However, the structure of

a ship or a train is significantly different from that of an aircraft. Consequently, the weight

constraints and the loading operations are very specific, which makes the ACLPPD pecu-

liar and basically different from these other two loading problems. Moreover, especially in

the case of ships, the number of containers to be loaded leads to problems which are too

big to be solved by exact methods. The literature mainly consists of heuristics and does

not present exact mathematical models for real problems.

Some papers consider loading questions in conjunction with other important questions.

In a recent survey, Pollaris et al. (2013) provide a list of research projects carried out on

Vehicle Routing Problems (VRP) with loading constraints. These problems are extremely

complex and few or limited exact methods are presented. All of them are based on bin

packing models and not on assignment to predefined positions.

The studies of Mongeau and Bès (2003); Verstichel et al. (2011) and especially Lim-

bourg et al. (2012), which we started from, relate most closely to our work. These three

papers indeed deal with commercial cargo aircraft with predefined positions and standard-

ized ULDs, use exact methods and consider the aircraft’s center of gravity. We nonetheless

significantly depart from these works. Our contributions are multiple. Our main contri-

bution is to consider a trip consisting of several legs with pickups and deliveries occurring

at intermediate airports. This compels us to model the handling operations on the ground

6



and to adapt the basic constraints of the Weight & Balance Problem to the multi-leg trip.

We analyze the impact of loading operations in terms of costs. The mathematical model

that we propose simultaneously takes into account two conflicting monetary objectives. To

our knowledge, this has never been done before. The integration of a larger set of realistic

constraints is also a contribution. We also provide information about the complexity of the

problem. Finally, we show measures of performance based on real data.

4. Problem description and mathematical formulation

4.1. Main parameters and variables

Our model is built on three main sets of parameters. The first one is the set L of

legs, which are the different parts of a trip separating two successive airports. This model

considers but two legs. However, generalization to more legs is straightforward. A trip

composed of two legs is a common case for long range flights while considering more legs

would essentially complicate notations. The second main set of parameters is the set U
of ULDs. For each ULD, we know its type (IATA code), its weight wi (supposed to be

uniformly distributed), its airports of origin and destination. Knowing the origin and

destination of each ULD, we can establish three distinct subsets of ULDs: U1 for ULDs

loaded at the depot and unloaded at the first destination, U2 for those loaded at the first

destination and unloaded at the second one, U3 for those loaded at the depot and unloaded

at the second destination. For ease of notations, we also define UL
k as the subset of ULDs

present in the aircraft for the leg k ∈ L. By definition, the intersection of UL
1 and UL

2

is U3. The last set of parameters is the set P defining the available positions, which are

predefined spaces in the aircraft able to accommodate ULDs. Each position is located on

a specific deck and can be situated on the left-hand side (L), on the right-hand side (R) or

even cover the whole width (C). To identify all positions on either side of the center, we

respectively use the subsets PR and PL.

Our main variables are binary variables xijk defined as:

xijk =

1 if ULD i is in position j during leg k

0 otherwise,
∀i ∈ U,∀j ∈ P,∀k ∈ L

4.2. Objective function

As stated in the previous section, the objective of the ACLPPD is to assign each

ULD to one position while minimizing total costs, which is realised by minimizing fuel
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consumption on each leg and handling operations at intermediate airports. More exactly,

we will minimize the overcosts.

As the location of the center of gravity (CG) has an impact on fuel consumption, the

CG, on each leg, should be located at its best position. Without going into too many

technical considerations, the fuel consumption of an aircraft depends on the result of a

continuous battle of forces; namely the weight, lift, thrust, and drag (see Figure 3). A

slightly aft CG should reduce the drag and ultimately the thrust. Less thrust means

less fuel consumption. The location of CG is restricted within a range of certified limits

Figure 3: The forces acting on an aircraft in flight

defined by the aircraft’s manufacturer. These limits are crucially important since a CG

value outside of them can cause instability resulting in harmful effects. Within this range,

some freedom is allowed. Airlines and pilots are aware that an aft CG usually saves

fuel. Nonetheless, airlines typically define target location of the CG around the center of

certified ranges. In our case, we define the best location close to the aft certified limit,

less an additional security margin left to the operator’s appreciation (see Section 4.3 for

the longitudinal stability constraints and the computation of the optimal CG location). In

mathematical terms, this gives:

min
∑
∀k∈L

εk

Subject to:

CGk −OCGk − εk ≤ 0 ∀k ∈ L (1)

CGk −OCGk + εk ≥ 0 ∀k ∈ L (2)

where OCGk is the requested optimal CG location, CGk is the CG obtained after the

assignment of the ULDs and εk is the resulting deviation from the target for leg k.

The second objective of the ACLPPD is to minimize the number of handling operations.

All ULDs of U1 (resp. U2) must be loaded at the origin of leg 1 (resp. 2) and unloaded
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at the destination of the same leg. The number of ULD moves therefore is equal to the

number of ULDs in these sets and cannot be decreased. ULDs of U3 doesn’t a priori need

to be unloaded at the intermediate airport (optimal case). However, all these ULDs are

typically unloaded (worst case) in order to unload the ULDs belonging to U1 and load

those belonging to U2. This comes from the fact that U3 ULDs could stand in the path

of those that must be loaded/unloaded at the intermediate airport but also due to the

fact that the load plan must be adapted to the new leg while still ensuring a feasible and

correct location of the CG for the next leg. If the initial load plan takes into account the

different legs, it should be possible to assign ULDs in U3 to positions that would not be

in the entry/exit path of other ULDs and that would allow to reach a suitable CG for the

second leg. We therefore focus on the re-handling operations at the intermediate airport.

Moreover, an aircraft compartment can have more than one door. In this case, the

number of operations can be minimized by using the most accessible door. Without loss

of generality, let’s consider that each position can be reached from up to two doors: the

first one in the direction of the nose (”the nose door”) and the second one in the direction

of the tail (”the tail door”). There could be more than two doors for a same deck but only

two of them are relevant for each position.

An example for the main deck of a Boeing 747 is illustrated in Figure 4. For the

position j , the nose door is situated exactly at the nose and the tail door is the lateral

door. For the position j′, the nose door is the lateral door and there is no tail door. We

Figure 4: The different doors for the Boeing 747

can identify the set of positions in the entry/exit paths to/from the position j as follows

(see Figure 4):

- BN
j is the set of all positions situated between position j and the first door in the

direction of the nose. BN
j is an empty set if there is no nose door.

- BT
j is the set of all positions situated between position j and the first door in the

direction of the tail. BT
j is an empty set if there is no tail door.

9



We also introduce the two following sets of binary variables to determine through which

door a ULD is unloaded:

αN
j =

1 if the ULD in position j is unloaded through the nose door ,

0 otherwise .

αT
j =

1 if the ULD in position j is unloaded through the tail door ,

0 otherwise .

The values of αN
j and αT

j are determined by the following set of constraints:

αN
j + αT

j ≤ 1 ∀j ∈ P (3)

αN
j + αT

j ≥ xij1 ∀j ∈ P, ∀i ∈ U1 (4)

αN
j = 0 ∀j ∈ P | BN

j = ∅ (5)

αT
j = 0 ∀j ∈ P | BT

j = ∅ (6)

Constraint (3) ensures that when unloading a ULD in position j, one door only is used.

Constraint (4) guarantees that the ULDs in U1 are unloaded at the intermediate airport.

Constraints (5) and (6) stipulate that some doors may either not exist or not be used.

We still need to introduce two other sets of binary variables to count the number of

ULDs belonging to U3 that are unloaded, then loaded again, at the intermediate airport.

Since this airport is not their final destination, these operations ought to be spared.

nN
j =

1 if the ULD in position j is unnecessarily unloaded through the nose door ,

0 otherwise .

nT
j =

1 if the ULD in position j is unnecessarily unloaded through the tail door ,

0 otherwise .

The nj are determined on the basis of the αj values thanks to these constraints:∑
j′∈BN

j

αT
j′ ≤ nT

j |BN
j |+ (1− xij1)|BN

j | ∀j ∈ P, ∀i ∈ U3 (7)
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∑
j′∈BT

j

αN
j′ ≤ nN

j |BT
j |+ (1− xij1)|BT

j | ∀j ∈ P, ∀i ∈ U3 (8)

The sum in the left term of (7) is the number of ULDs that will go through position j to

be unloaded by the tail door. The maximal value of this sum is equal to the size of BN
j .

If this sum is strictly positive, the ULD in position j is blocking the exit path and must

also be unloaded through the tail door. If this ULD belongs to U3, it is an “unnecessary”

operation, xij1 equals one and nT
j can only take the value one. If it is not the case, the

constraint is not binding and nT
j is free but will take the value zero due to the objective

function. The same reasoning applies to the other door with constraint (8).

We want to minimize these unnecessary unloadings, which leads to the objective func-

tion for the ground operations:

min
∑
∀j∈P

(nN
j + nT

j )

Finally, both objectives have to be considered together and expressed in monetary

terms. For the first element, the target location of the CG is typically expressed as a

percentage of the aircraft Mean Aerodynamic Chord (MAC). The MAC is defined by the

airfoils and is a mean distance between leading and trailing edges in the direction of the

airflow. For the Airbus 330, a displacement of CG from its location of reference (28%)

to a more aft CG (37%) could give rise to a 0.5% increase of air nautical miles per KG

of fuel (Airbus Fuel Economy Material (2004)). This result can be converted in terms

of fuel savings. The pilots and load planners consulted expect about a 2.5% decrease of

fuel consumption for a 777 when the CG is displaced by a distance equivalent to 10% of

the MAC to the aft. The exact relationship between CG location and fuel consumption

depends on each type of aircraft. These examples provide rough approximations showing

the amount of the potential savings. Knowing the exact relation between the CG location

and the fuel savings for a specific aircraft and the absolute volume of fuel required for the

trip with this optimal location of the CG, we can measure how many tons of fuel must

be added for one percent forward shift of the CG. By multiplying this by the fuel price,

we obtain the cost by unit deviation. εk measures the deviation. Set cfk as the monetary

cost per unit deviation for fuel consumption, then (εkc
f
k) is the additional cost induced on

leg k by an improper location of the CG (too forward). As the first goal is to push the

CG to the aft, any positive value for the cfk would do the job. cfk can be interpreted as

penalty coefficients. The main drawback of an approximative value is that it would lead
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to an approximative value of the total cost reduction, but it would have no impact on the

optimal assignment (at least if this value remains a reasonable approximation with respect

to the second objective: the cost minimization associated to the loading operations). If

airlines and load planners prefer to select a sub-optimal location more inside the range of

values certified by the aircraft manufacturer, the target CG does not correspond anymore to

the upper certified limit and always pushing to the aft is not suitable. We decide to model

it as a soft constraint. Any deviation of the CG to the aft beyond the target must also

be penalized and at least by a coefficient cfk to give priority to this constraint. Therefore,

the εk measure the absolute deviations with respect to the optimal CG. Alternatively, a

hard constraint could have been easily implemented by defining a lower max threshold in

constraint 26. When optimal solutions exist, as it is the case for most of our numerical

experiments, both options are totally equivalent since the additional cost is null.

The second cost in the objective function is associated to the ground operations. The

handlers assigned to this task need to operate quickly because the aircraft has a limited

time window before the next departure. The total wages cost depends on the number of

employees assigned to the task, which is directly proportional to the number of ULDs to

be moved. Each company can measure it. The cost coefficient for handling one ULD is

denoted as ch.

We resort to the following multi-criteria objective function where all coefficients can be

defined precisely knowing cost realities:

min
∑
∀k∈L

cfkεk + ch
∑
∀j∈P

(nN
j + nT

j ) (9)

4.3. Constraints

Some P&D constraints are directly related to the objective function and have been pre-

sented in the previous section. Taking into account the sequences of loading and unloading

leads to additional P&D constraints. We present first these additional constraints. Next,

we introduce hazardous and oversized products. We conclude this section by adapting the

realistic constraints presented in Limbourg et al. (2012) to the case of multiple legs.

4.3.1. Pickup & Delivery Constraints

Categories of ULDs. Due to their origin and destination, not all ULDs are present on

each leg, which means that the corresponding xijk variables can be initialized to zero (and

removed during the optimization). This is specified by constraint (10).
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xijk = 0 ∀i /∈ UL
k , ∀j ∈ P (10)

Correct unloading sequence. Constraints (11) and (12) prevent collisions of ULDs being

unloaded through different doors. Constraint (11) states that the ULD in position j can

only go out through the nose door (αN
j = 1), if there is no ULD between j and the nose

door (BN
j ) trying to go out in the opposite direction, i.e. through the tail door (the sum is

null). Constraint (12) manages the move in the opposite direction.

∑
j′∈BN

j

αT
j′ ≤ (1− αN

j )|BN
j | ∀j ∈ P (11)

∑
j′∈BT

j

αN
j′ ≤ (1− αT

j )|BT
j | ∀j ∈ P (12)

No exchange of positions inside the aircraft. Any ULD assigned to a different position for

the second leg, must first be unloaded. Constraints (13) and (14) ensure that each ULD

not unloaded at the intermediate destination, i.e. when (nN
j + nT

j ) is null, keeps the same

position for the second leg (xij1 = xij2).

xij1 − xij2 ≤ (nN
j + nT

j ) ∀i ∈ U3 (13)

xij2 − xij1 ≤ (nN
j + nT

j ) ∀i ∈ U3 (14)

Feasible loading sequence. Constraints (15), (16), (17), (18) and (19) ensure a feasible

loading sequence of the ULDs belonging to U2 at the intermediate airport. These ULDs

can only reach positions for which the path is free. Constraint (15) checks if there exists

a free path between the nose door and position j. At the time of loading, the path can

only be blocked by ULDs of U3 that were not unloaded (nT
j′ + nN

j′ = 0). If there is no free

path, the left term of (15) is strictly positive and the new binary variable βN
j can only take

the value one. Similarly, constraint (16) restricts βT
j to one if the path through the tail

door to position j is not free. If both paths are blocked, constraint (17) states that ULD

i cannot be assigned to position j. When there is no nose (resp. tail) door associated to

a position, then the path from this direction to the position j is automatically forbidden
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and consequently βN
j = 1 (resp. βT

j = 1). This is the purpose of constraints (18) and (19).

∑
i′∈U3

∑
j′∈BN

j

(xi′j′1 − nT
j′ − nN

j′ ) ≤ βN
j |BN

j | ∀j ∈ P (15)

∑
i′∈U3

∑
j′∈BT

j

(xi′j′1 − nT
j′ − nN

j′ ) ≤ βT
j |BT

j | ∀j ∈ P (16)

βT
j + βN

j − 1 ≤ (1− xij2) ∀j ∈ P, ∀i ∈ U2 (17)

βN
j = 1 ∀j ∈ P | BN = ∅ (18)

βT
j = 1 ∀j ∈ P | BT = ∅ (19)

Inaccessibility of some doors. Due to the dimensions of ULDs, some doors might not be

accessible. If a ULD i is assigned to position j on any leg k (xijk = 1) and cannot go

through the nose (resp. tail) door, constraint (20) (resp. constraint (21)) ensures that this

unloading direction is forbidden.

xijk ≤ (1− αN
j ) ∀i ∈ UL

k | Ui doesn’t pass through the nose door, ∀j ∈ P, ∀k ∈ L
(20)

xijk ≤ (1− αT
j ) ∀i ∈ UL

k | Ui doesn’t pass through the tail door, ∀j ∈ P, ∀k ∈ L
(21)

Domino effect. Finally, in order to achieve a CG as close as possible to the target value,

some ULDs could be assigned to a different position on the second leg. It will be the

case each time the gain in terms of fuel is greater than the additional costs induced by

the ground operations. This case, however, implies a domino effect: all ULDs in the path

of those being unloaded to reach a better CG will have to be unloaded as well. This is

ensured by constraints (22) and (23). With constraint (22), if the ULD in position j is

unnecessarily unloaded through the tail door (nT
j = 1), then all ULDs of U3 that were

assigned to a position between j and the tail door (BT
j ) over the first leg (xij′1 = 1) must

also be unloaded “unnecessarily” (nT
j′ = 1). Constraint (23) does the same for the nose

door.

xij′1 − 1 + nT
j ≤ nT

j′ ∀i ∈ U3, ∀j ∈ P, ∀j′ ∈ BT
j (22)
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xij′1 − 1 + nN
j ≤ nN

j′ ∀i ∈ U3, ∀j ∈ P, ∀j′ ∈ BN
j (23)

4.3.2. Other Advanced Constraints

Here are two new constraints linked to hazardous and oversized products.

Hazardous goods. Some loads may contain hazardous goods. Segregation requirements

apply to ensure safety. Generally, dangerous goods can be classified into a limited number

of categories. The required segregation distance (in inches) between the categories i and

i′ is known and denoted sii′ . The effective longitudinal distance (in inches) between the

positions j and j′ is denoted ejj′ . This yields constraint (24).

xijk + xi′j′k ≤ 1 ∀i, i′, j, j′ | ejj′ ≤ sii′ ; ∀i, i′ ∈ UL
k , ∀j, j′ ∈ P, ∀k ∈ L (24)

Oversized ULDs. Some oversized ULDs do not fit into one position. In this case, several

positions are exactly or partially combined in order to form larger ones. In order to

introduce these specific ULDs into our model, we fictively divide each larger ULD into

two smaller ones. However, we need to be sure that the model assigns the two parts of

the larger ULD to two adjacent positions. If we denote by ti the ULD linked to the ULD

i and by Aj the set of positions adjacent to position j, constraint (25) ensures the right

assignments of larger ULDs:

xijk ≤
∑
∀j′∈Aj

xtij′k ∀i ∈ UL
k , ∀j ∈ P, ∀k ∈ L (25)

4.3.3. Adapting basic constraints

Here are the constraints presented in Limbourg et al. (2012) but adapted to the case

of multiple legs.

Stability constraints.

minCGk ≤ CGk ≤ maxCGk ∀k ∈ L (26)

− D̄ ≤
∑
i∈UL

k

wi(
∑
j∈PR

xijk −
∑
j∈PL

xijk) ≤ D̄ ∀k ∈ L (27)

Constraints (26) ensures the longitudinal stability by checking that the center of gravity

of the aircraft on each leg is within the limits certified by the aircraft manufacturer. More

precisely, the boundaries will depend on the weight of the aircraft under different scenar-
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ios: the weight at take off with fuel (Take Off Weight), the expected weight for landing

(Landing Weight) and the total weight without fuel (Zero Fuel Weight). The three sce-

narios define three two-dimensional certified areas called feasibility envelopes. Using the

expected consumption and the fuel curve relation between the three scenarios, one single

lower bound minCG and one upper bound maxCG are determined. A security margin

can be added here as mentioned in the previous section. Constraint (27) checks that the

lateral balance is within reasonable limits. The difference between the weight allocated

to either side of the fuselage centerline should not be too important (not exceed D̄). An

aircraft laterally unbalanced could force the pilot to adjust the aileron trim tab or to hold

a constant aileron control pressure. Both measures will cause more drag, hence more fuel

consumption and a lower efficiency.

Possible positions for ULDs.∑
i∈UL

k

xijk ≤ 1 ∀j ∈ P, ∀k ∈ L (28)

xijk = 0 ∀i ∈ U, ∀j ∈ P, ∀k ∈ L | Ui does not fit in Pj (29)

xijk + xi′j′k ≤ 1 ∀i, i′ ∈ UL
k , ∀j ∈ P, ∀j′ ∈ Ej, ∀k ∈ L (30)

Constraint (28) states that, for a given leg, a position can accommodate but one ULD.

Constraint (29) makes certain that each loaded ULD physically fits in its position. If not,

the corresponding assignment is forbidden and the only allowed value for the assignment

variable xijk is zero. These variables are removed during the optimization. For a same

aircraft, different configurations of positions are possible. Some positions are larger and

are overlaying several smaller ones (see Figure 2). For each larger position j, the set Ej

represents all the smaller positions covered by j. If the position j is used, then all positions

in the set Ej must be discarded.

No selection among ULDs.∑
j∈P

xijk = 1 ∀i ∈ UL
k , ∀k ∈ L (31)

Constraint 31 ensures that all ULDs are accomodated on board.

Weight restrictions. :
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wixijk ≤ W̄j ∀i ∈ UL
k , ∀j ∈ P, ∀k ∈ L (32)∑

i∈UL
k

∑
j∈P|Pj∩Od

a 6=∅

xijko
d
ija ≤ Ōd

a ∀d ∈ D, ∀a ∈ Od, ∀k ∈ L (33)

∑
i∈UL

k

∑
j∈P|Pj∩

⋃a
c=1 Fc 6=∅

a∑
l=1

xijkfijl ≤ F̄a ∀a ∈ F, ∀k ∈ L (34)

∑
i∈UL

k

∑
j∈P|Pj∩

⋃a
c=1 Tc 6=∅

a∑
l=1

xijktijl ≤ T̄a ∀a ∈ F, ∀k ∈ L (35)

Those constraints are related to the structural design of the aircraft. The first constraint

(32) ensures that the weight exerted on each position does not exceed the maximum weight

allowed by the position (denoted by W̄j). Constraint (33) gives the combined load limits. D
denotes the set of decks augmented by an artificial deck corresponding to the entire aircraft.

Let’s imagine that the aircraft is cut in slices of one inch width. There is a specific weight

limit for each slice and each deck d in D. Under some uniform distribution assumptions

of the weight inside the positions, the one inch slices can be replaced by broader ones. Od
a

denotes the ath slice for deck d and Ōd
a the maximal weight allowed for this area. Finally,

odija represents the proportion of wi falling in {Pj ∩ Od
a}. Constraints (34) and (35) are

the cumulative load limits when all decks are considered simultaneously . With constraint

(34), we are interested in the total weight from the nose to the end of each of the previously

defined slices, and with constraint (35), in the total weight from the tail to the beginning

of each slice. These consecutive forward and aft slices are denoted by Fa (forward) and Ta

(aft). F̄a (resp. T̄a) is the maximal cumulative weight allowed for the section starting at

the nose (resp. the tail) and ending at Fa (resp. Ta). Finally, the variable fija (resp. tija)

represents the proportion of wi falling in {Pj ∩Fa} (respectively {Pj ∩Ta}). See Limbourg

et al. (2012) for details.

5. Complexity

Let us now give some insights into the complexity of the problem. The main component

of the model is the first term of the objective function dealing with balanced loading and

fuel consumption. It is shown below that the problem defined by this first part of the

objective function is already NP-hard. Moreover, the other two main contributions of this

paper, the introduction of several destinations with pickup and delivery and of several
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doors in the model, also significantly increase the complexity of the problem.

To show that the weight and balance part of the ACLPPD is NP-hard, we start from

the Partition Problem. In this problem, the question is to decide whether it is possible

to split a set of numbers {w1, . . . , wn} in two disjoint subsets so that the sum of elements

in each subset is the same. Garey and Johnson (1979) define it more formally in their

famous guide to NP-completeness. Let us now interpret the values {w1, . . . , wn} as the

ULD weights. Let us also consider that the two partition subsets represent the aft and the

forward areas of an aircraft. Assigning a value to a subset would therefore be interpreted

as assigning the corresponding ULD to a position in this part of the aircraft. By setting

each available position in the two parts of the aircraft at exactly the same distance of the

ideal location of the center of gravity (CG), we get exactly the same objective for the two

problems. For this specific ACLPPD, the CG after loading can only be at the requested

location, i.e. that minimizing the fuel consumption, if and only if the total weight in each

of the two areas is exactly the same, i.e. if the sums of values for the two subsets are equal.

All the other constraints in the ACLPPD can be disregarded by setting appropriate and

unbinding values of the constants. The partition problem is therefore a special case of the

ACLPPD where all positions are at equidistance of the required CG location. Since the

partition problem is NP-hard, it is also the case for the ACLPPD. Intuitively, the partition

problem could represent a very robust aircraft (no weight limit) operated by volunteers (β

set to zero), and in which the shipment can be stacked (the positions are at equidistance

of the ideal CG location and overlaying list is empty).

The complexity of defining the assignments over two legs cannot be analyzed inde-

pendently of the balanced loading problems. Considering two destinations implies solving

simultaneously two (NP-hard) related instances of the balanced loading problem : one for

each leg. The minimization of the number of operations (at the intermediate airport) is

the link that makes these two problems dependent and that explains why it is far more

complex to solve the problem with an intermediate airport than to independently solve

two instances of the same size. Indeed, the inputs for the optimization over the second

leg, i.e. mainly which positions are available, depend on the set of feasible solutions of

the optimization problem restricted to only the first leg. For each feasible solution of the

latter, there exists one instance to optimize over the second leg. This drastically increases

the global domain space.

Finally, another originality of our work is that unloading can occur through several

doors. For each ULD, when settled in a given position, the question therefore is as follows:
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which door should it be unloaded through in order to minimize handling operations. This

raises the question of the complexity associated with the introduction of the αT
j and αN

j

in the model and, more operationally, what is the optimal sequence of unloadings? It is

not the most complex part of the problem. A näıve algorithm with complexity O(n2),

where n is the number of ULDs, already answers this question. Indeed, since the ULDs

cannot collide once unloaded, there exists, for each deck and each lane, at least one position

between two doors of the plane for which all the ULDs close to the tail door will leave by

this door (or stay on board) and all the ULDs close to the nose door will go through the

nose door (or stay on board). For each lane and deck with several doors, all the positions

from the nose door to the tail door can be successively consider as a candidate for the

partitioning. It globally takes n operations. Starting from this position, go back to the

nose door and stop at the first ULD to be delivered at the intermediate airport (i.e. the

first ULD that must be unloaded). From there, go on to the nose and count the number of

ULDs to be delivered at the final airport, i.e. the sum of nN
j . Do the same from the pivot

position to the tail door to compute
∑
nT
j . This is again done in n operations. The best

partitioning position, which defines all the αT
j and αN

j , is the one minimizing the sum of

nN
j and nT

j and the complexity of the whole algorithm is O(n2).

6. Implementation and results

Our mathematical model has been tested on a set of real-world instances provided by

TNT Airways, a wholly owned subsidiary of the TNT Express. Their main activity is to

provide TNT Express with a air freight network connecting daily all TNT Express locations

throughout the world and more specifically in Europe. TNT Express is one of the leading

delivery integrators in Europe. The model was implemented in Java and relies on the

IBM ILOG CPLEX 12 library (default parameters). Thanks to a graphical interface, it is

possible to visualize, for each leg, the loading plans, the position of the CG and the different

weight distributions. The tests were carried out on a personal computer (Windows 7, Intel

Core i5-2450M, 2.50GHz, 8.00 GB of RAM).

6.1. The case of a Boeing 777

We first present the detailed results for a historical flight. This is an intercontinental

one with a first leg of about 2740 nautical miles and a second leg of 3200 nautical miles.

The aircraft is a Boeing 777 Freighter. The B777 is the successor of the famous B747, one

of the most used freighters in the world. As illustrated in Figure 2, this Boeing 777 has
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four doors (one per compartment) and a rather large number, 114, of predefined positions.

40 predefined positions are on the main deck. This corresponds to 13 large positions

overlapping 26 small ones (defined on the right and left sides of the aircraft) and one last

central position at the rear. On the lower deck, 10 large positions (P) overlap 32 small

ones (R and L). There is one more central position (C) for each couple of right and left

positions.

The B777F was loaded at full capacity. The sets of ULDs are given in Table 1. For

this shipment, we computed and set the optimal CG location for the first leg (resp. second

leg) at 39.3% MAC (resp. 38.3% MAC) but we reduced it by 1% as a security margin. 48

tons of fuel were filled into the tanks for each leg. The cost ch of an unnecessary operation

is fixed at 40USD. Assuming an increase of 2% of fuel consumption for a 10% MAC shift

of the CG location and a cost of one USD per fuel liter, we get an approximate fuel

cost coefficient cfk of 100USD. The optimal solution found by our software is depicted in

Set Origin Destination # ULDs
U1 Liège DES1 19
U3 Liège DES2 24 (1 large one)
U2 DES1 DES2 9

UL
1 Leg 1 (Liège-DES1) 43 (1 large one)

UL
2 Leg 2 (DES1-DES2) 33 (1 large one)

Table 1: Data for our main case

Figures 5 and 6, respectively for the first and second leg. All the positions are represented

by boxes. When a ULD has been assigned to a position, the box is colored and the type

as well as the weight of the ULD is indicated on the box. In Figure 5, the ULDs in light

(resp. dark) gray belongs to U1 (resp. U3). This solution meets all requirements. The

aircraft has a lateral weight imbalance well below the trehsolds: 235Kg for the first leg

and 1527Kg for the second one. On the same figures, the two rectangles situated below

each loading plan provide the level of combined weights. The lines situated above are the

thresholds. The cumulative load limits are also complied with. For each leg, the three CGs

(ZFW-TOW-LW) lie within their respective feasibility envelopes as depicted in Figure 7.

We first measure the quality of the solution by looking at the two terms of the objective

function, i.e. the CG location and the number of rehandling operations. The solution found

by our software is the best we could hope for. The requested CG location, minimizing fuel,

is reached for each of the legs (εk ' 0) and no additional rehandling operations are required
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Figure 5: Optimal loading plan obtained by our model for the first leg

Figure 6: Optimal loading plan obtained by our model for the second leg

Figure 7: Feasibility envelopes as defined by the aircraft manufacturer

at the intermediate airport. This last fact clearly appears on Figures 5 and 6 since all the

ULDs that must be unloaded at the intermediate airport are assigned positions close to

the doors and the other ULDs keep the same positions over the two legs.

The second performance measure is the computation time. We limit the computation

precision to one USD. The CPLEX optimizer stops as soon as it either finds the optimal

solution or a feasible one with an objective value, i.e. the excess cost, of no more than one

USD. We know that the problem is NP-Hard and that solving it could be time consuming.

We indeed needed sixteen hours to get the optimal solution for this instance. However,

this seems to be an extreme case and we usually obtain results in a few minutes (see the

additional results in the next section). We believe that at least two reasons can explain

why this specific instance remains difficult. First, the aircraft is loaded at full capacity on
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the first leg, which is rather seldom. Secondly, the number of positions to consider is very

large due to the number of different types of ULDs that are involved. Just removing one

ULD leads to an optimal solution achieved in only four minutes. It is also worth noting

that the Branch and Cut process found quickly good feasible solutions but spent a lots of

time to validate the optimal one. We therefore also provide in the Tables the best result

obtained within a time limit of 10 minutes . Finally, another interesting insight is that

optimizing independently over the two legs, as done in Limbourg et al. (2012), only takes

a few seconds. Considering several legs with P&D operations significantly increases the

complexity of the problem.

Load Master Our solution With time limit

%MAC ZFW (leg1) 24.4 38.3 38.2
%MAC ZFW (leg2) 31.1 37.3 37.2
# unloadings at DES1 43 19 22
# loadings at DES1 33 9 12
# ULDs ∈ U3 unloaded at DES1 24 0 3
Computation Time 20 minutes 16 hours 10 minutes

Table 2: Loading into a Boeing 777 aircraft: main results

The last performance measure is to approximate the potential savings. For that, we

compare our solution with the one obtained by the loadmaster working by hand. The

loadmasters of the different companies we have met all follow similar procedures. They

try, when time permits, to load the cargo in such a way that the observed CG lies close to

a predefined value in the feasibility envelope, e.g. at 28% or 29% of the MAC range. The

main results are summarized in Table 2. To save fuel, our approach pushes the leg CGs as

much as possible to the aft, well beyond the values usually considered. Using our initial

assumptions, it would imply a fuel saving of 2010USD. Moreover, no ULD in transit have

to be unloaded at the first airport while, as observed in lots of companies, it is common

to plan independently the two legs and to be required to unload all or a large part of the

cargo. With respect to the worst case, this saves 24 unnecessary operations,i.e. about

960USD. The total savings for this single trip sums up to 2970USD. When we limit the

computation time to only 10 minutes we still reach a very good feasible solution. The total

savings in this case sum up to 2830USD. Let’s imagine that this flight operates under the

same conditions three times a week, every week and in both directions, the savings would

amount up to 650 000USD per year. Moreover, the same optimization process may be
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applied to all the other aircraft of the fleet.

6.2. Additional Cases

The question now is to check whether the results for the specific case presented in the

previous section are representative. To provide a partial answer, we solved hundreds of

other real-world cases. We still consider the same aircraft but with different loads and

different sets of ULDs. We provide the results for eight configurations in Table 3. All

other simulations lead to similar results. Cases (A) and (B) imply Pickup and Delivery

Operations. No delivery but only pickups occur with cases (C), (D) and (E) and the

opposite with cases (F), (G) and (H). We set a computation time limit of 10 minutes. The

optimal CG location is reached for all the instances, implying fuel savings. Case (H) is

the only one stopped after 10 minutes of computation. The CG is at the optimal location

but we observe 8 rehandlings of ULDs in transit. This remains better than the solution

observed in practice for which 23 ULDs in U3 are moved at the first airport.

P&D Pickup Delivery
A B C D E F G H

|U1| 22 20 0 0 0 24 18 19
|U3| 15 21 23 22 14 14 23 23
|U2| 14 10 14 20 22 0 0 0
Status O O O O O O O F
ε %MAC 0 0 0 0 0 0 0 0
# unloadings 0 0 0 0 0 0 0 8
Comput. time 1’15” 6’58” 2’04” 5’15” 54” 3’26” 5’58” 10’

Table 3: Additional results for different cases of ULDs to load

We also randomly generated some hazardous goods among the ULDs loaded and we

considered some cases in which a nose door was available. Since these experiments did not

provide different results and insights, we have decided not to include them in this paper.

7. Conclusion

In this paper, we have analyzed the Airline Container Loading Problem with Pickup

and Delivery (ACLPPD). This is a crucial problem encountered every day by airlines. We

have considered trips made of several legs and at the end of which P&D operations may

occur. We have proposed a new mixed integer linear model.
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Our contributions are multiple. First, the model is based on international standards

and is valid for most of the commercial operators. We have integrated, and adapted to

the multi-leg context, a large set of the constraints they face. Most of the operators

should be able to use this approach in real life and, if needed, to extend it, to any of their

specifications. Second, we showed how to take care of the loading/unloading sequences

when Pickup and Delivery arises. In this context, we again tried to keep close to reality

by considering aircraft with several doors. Third, we showed that the weight and balance

problem is NP-hard. Considering several legs and several doors make the problem even

more complex to handle. Finally, another originality of our approach was to focus on the

costs. We have analyzed two important costs directly linked to the loading of ULDs: the

impact on fuel consumption and the cost of handling operations. We showed that locating

the center of gravity closer to the aft should be done to decrease fuel consumption.

Our approach was tested on real data and we conducted hundreds of experiments. It

appeared that it was possible to find quickly optimal or near-optimal solutions and that

our approach leads to substantial savings with respect to current typical practices.

Applicability TNT Airways has been and is still involved in this project. The Air

France operations research department started this year a study to show if the findings

of this research can be applied to their container loading process. Their first results show

that the fuel consumption can be reduced by moving the center of gravity backward.
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