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This paper describes a revenue management project with a major airline that operates in a fiercely com-

petitive market involving two major hubs and having more than 30 parallel daily flights. The market has

a number of unusual characteristics including (1) almost half of customers choose not to purchase the tick-

ets after booking; (2) about half of customers purchase their tickets within 3 days of departure; and (3) a

significant number of customers no-show or go-show.

We formulate choice based stochastic optimization problems to maximize the expected revenue for the

airline. The inputs of the stochastic models include booking arrival rates, competitor assortment selection,

booking choice probabilities for the airline’s own flights as well as competitors’ flights, booking-to-ticketing

conversion probabilities, and go-show and no-show probabilities. We build a number of booking choice

models, including multinomial logit models, nested logit models, and mixed logit models. The latter two

types of models are aimed at incorporating unobserved heterogeneous customer preferences for different

departure times. We formulate corresponding deterministic (fluid) optimization problems under each of the

three booking choice models. We designed a column generation algorithm to compute optimal or near-

optimal solutions for the deterministic problems, and the solutions are used to make assortment selections

for the stochastic problem. The models used as input for the optimization problems are calibrated using

2011 data or 2012 data. Simulation studies using 2012 data show that the fluid based booking policies

generate significantly more revenue than the airline’s existing policy, and that policies based on the simpler

multinomial logit models perform better than policies based on nested logit and mixed logit models, even

when the simulation is based on the latter models, and even though the latter models seem to be more

realistic.
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1. Introduction

In this paper we describe an airline revenue management project. With “revenue management”

we mean the modeling of a seller’s decisions and the seller’s resulting sales and revenue and/or

profit, the calibration of the models with available data, the optimization of the seller’s objective,

and the testing of the decisions obtained from the optimization, possibly allowing for influences

not captured in the model. Although revenue management is aimed at optimizing the objective of

a single seller, the influence of other sellers and the resulting competition is taken into account in

our work.

Revenue management as described above started in the airline industry; many authors refer to

Littlewood (1972) as the origin of airline revenue management. Littlewood (1972) has indeed been

very influential in revenue management — the intuitive Littlewood rule to allow bookings in a low

fare class if the low fare is greater than the product of the high fare and the probability that the

remaining seats can be filled charging the high fare, has formed the core of the EMSRb method

and airline revenue management software for many years. Littlewood (1972) also pointed out that

it had become “increasingly important for the airline objective to be to maximise revenue instead”

of traditional performance measures such as revenue passenger miles per seat mile or load factor

(revenue passengers per seat). This may seem obvious to us today, but at the time the use of

traditional performance measures was so deeply embedded that Littlewood’s suggestion was truly

revolutionary. Thus, the origin of airline revenue management can be traced back more than 40

years ago. It may be surprising to an outsider that there remains anything of significance to be done

in revenue management, and especially airline revenue management, but we think that researchers

have barely begun to address many of the most important aspects of revenue management, such as

modeling consumer behavior and competitor behavior. In this paper we address some important

issues, some of which we only became aware of after analyzing the data. We give an overview of

all major parts of the project, with emphasis on aspects that are novel.

Project overview. This project considers one of the busiest origin-destination markets in the

world, involving about 30 flights per day by three major airlines that we call XX, YY, and ZZ. The

airline that we optimize for is XX, with YY and ZZ as its competitors. Airline XX has implemented

versions of our models and booking policies in its booking control system.

The project consisted of the following major activities:

1. We acquired and analyzed data of the origin-destination market, including booking data and

fare class availability data of all three competitors, as well as data on ticketing, cancellations,

no-shows, and go-shows of airline XX. Section 4 provides more detail about the data.
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2. We developed models of customer arrivals, competitor assortment selection, customer booking

choice behavior, customer purchasing behavior, and cancellation, no-show, and go-show behavior.

Separate models were calibrated with 2011 data and 2012 data. The models and estimation results

are presented in Section 5.

3. We formulated a customer choice based stochastic optimization problem to optimize the

expected revenue for airline XX. The stochastic optimization problem is given in Section 3.1. We

consider three versions of the problem based on three classes of booking choice models.

4. Corresponding to the stochastic optimization problem, we formulated a deterministic (or

fluid) optimization problem to optimize the expected revenue for airline XX. The deterministic

optimization problem is given in Section 3.2. We also consider three versions of the deterministic

problem based on three classes of booking choice models.

5. The deterministic optimization problem is challenging because of the large number of possible

assortments. For the deterministic problem under a multinomial logit choice model, we present an

efficient column generation algorithm which converges to an optimal solution. For the deterministic

problem under nested logit and mixed logit choice models, we use heuristics to generate promising

columns. The algorithms are discussed in more detail in the online companion to this paper. The

resulting solutions are called fluid booking policies. We solved each of the three versions of the

deterministic optimization problem for the models calibrated with 2011 data and for the models

calibrated with 2012 data, obtaining six fluid booking policies.

6. We built a computer simulation for each version of the stochastic optimization problem. The

simulation uses models calibrated with 2012 data. We evaluated each of the six fluid booking

policies as well as the actual 2012 booking policy of airline XX using the simulation for each of

the three versions of the stochastic optimization problem. Thereby we obtained numerical results

regarding the performance of the fluid booking policies when the booking choice model used to

obtain a fluid booking policy is the same as the booking choice model used in the simulation, as well

as when the fluid booking policy and the simulation are based on different booking choice models,

and when the models used to obtain a fluid booking policy are calibrated with older data than the

simulation, as well as when the models used to obtain a fluid booking policy are calibrated with

the same data as the simulation. This gives some evidence of the robustness of the performance

results with respect to modeling errors as well as with respect to errors in parameter estimates.

Modeling innovations. Our models include the following features that we think are innovative:

(1) competition, (2) booking but not ticketing, (3) go-shows, and (4) modeling of unobservable

customer choice sets. Relatively few papers in the revenue management literature have considered
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competition, and as far as we know, the other three features are new in the revenue management

literature. Next we discuss these features in a little more detail.

1. There is fierce competition in the market between the three airlines. Therefore, the customer

choice sets in the booking choice models include alternatives offered by airline XX, as well as YY

and ZZ. Also, we forecast the alternatives that airlines YY and ZZ will make available during the

remainder of the booking horizon.

2. A large number of potential passengers make bookings but do not buy the corresponding

ticket. As far as we know, this issue has not been addressed in the revenue management literature.

As a result there is a need to make a distinction between booking and purchasing (also called

“ticketing”) in the models, including a model of the conversion of booking to purchasing.

3. In this market there are a significant number of no-shows and go-shows. “Go-shows” are

customers who show up at the airport and then request a change of flight. As far as we know

go-shows have not been addressed in the revenue management literature. Another issue that we

addressed that is often neglected in the revenue management literature, is no-show behavior. In this

case, four types of no-show customer are distinguished: (1) no-shows who go-show, (2) no-shows

who change to another flight and pay the required fee, (3) no-shows who cancel after the flight and

request a (partial) refund, and (4) no-shows who never request a refund or ticket change. Therefore

we developed no-show and go-show models, and incorporated the impact of no-show and go-show

behavior on capacity utilization into the optimization model.

4. Another topic that is of general importance in airline revenue management, but that has not

received attention in the literature, is the following: Typically, individual transaction data are used

to calibrate discrete choice models. Such data identify, for each customer, the alternative chosen

by the customer, as well as various attribute values of the customer and the chosen alternative.

However, the traditional theory of discrete choice model estimation assumes that for each customer,

the set of alternatives (called the choice set) among which the customer chooses is observed. This

assumption hardly ever holds in practice, but the violation of this assumption is ignored in most

discrete choice work. In the airline revenue management setting described, different customers are

interested in flying during different time intervals, but the time interval of interest to a customer

is usually not observed. This issue is especially important in a market such as the one described,

where there are many flights per day, and most passengers travel for business purposes and consider

fairly narrow time intervals for travel. If the discrete choice model incorporates parameters for

time interval preference, without explicitly taking into account that the time interval preference is

different for different customers, it could cause severe bias in the estimates of the other parameters.
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To illustrate the intuition, consider a simple setting with two time intervals, in which half the

customers choose the first time interval and half the customers choose the second time interval,

and then each customer chooses the cheapest flight in the customer’s chosen time interval, with

the prices in one time interval being less than the prices in the other time interval. If one would

estimate a discrete choice model with a price parameter (as well as parameters for time interval

preference), with the set of all flights as the choice set for each customer, then the price parameter

would indicate that the customers are not very price sensitive, because half the customers choose

a relatively expensive flight. On the other hand, if one would estimate a model with the correct

(but typically unobserved) choice set for each customer, the resulting model would indicate that

customers are much more price sensitive than the previous model. Since the true choice sets are

not observed, multinomial logit models are of the first (biased) type. We develop models to capture

unobserved variation in travel time preferences among the population of customers. As the intuition

suggests, we found that the price parameters are significantly more negative in the models that

incorporate preference variation than in the multinomial logit models.

Important phenomena. Next we discuss a number of phenomena in the considered market that

play an important role in the models.

1. Both origin-destination airports involved are hubs, and therefore the itineraries of almost

all passengers on the flights between the two hubs are between these two airports only. (If one

can travel from an origin O via hub A to hub B, then one can also travel directly from origin O

to hub B, and in general the latter itinerary is preferred over the former. Thus, almost all the

passengers on flights from A to B have origin A and destination B, that is, they are not connecting

passengers.) In the literature this is called the setting with parallel flights and it is the setting

considered in this paper.

2. A large fraction of bookings (and purchasing) takes place close to departure time. (This leaves

little time for recourse actions, and makes improvements in revenue management more challenging.)

For example, in 2011, 69% of bookings took place during the last week before departure, 49% of

bookings took place during the last 3 days before departure, and 23% of bookings took place on

the day of departure. That makes good forecasting especially important, because as mentioned

there is not much time for recourse.

3. Ticket prices tend to be cheaper earlier in the booking horizon and more expensive closer to

departure time. For example, Figure 1 shows that 20 days and 14 days before departure, more than

50% of the time the cheapest fare class (class 13) is the cheapest available fare class on a flight,

but 1 day before departure, more than 70% of the time the most expensive fare class (class 1) is

the cheapest available fare class on a flight.
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Figure 1 Fraction of days that each fare class is the cheapest available fare class for different numbers of days

before departure. Class 1 is the most expensive, and class 13 is the cheapest.

4. The previous two observations together mean that a large fraction of bookings occur close

to departure time, in spite of the steep discounts that are often offered for early bookings. These

two observations together suggest that many passengers travel for business reasons and are not

very price sensitive. The fare class selection behavior discussed in Section 5.2.6 provides further

evidence of a quite clear distinction between price sensitive and price insensitive customers, and

that the price insensitive customers constitute a significant fraction of customers.

5. The first two observations together also suggest that the booking arrival rate does not change

much if prices change. Thus, it seems reasonable to assume that the arrival rate is exogenous,

independent of the booking control policy. This assumption is standard in the literature and is also

assumed in this paper.

6. In this market, the price of a round-trip ticket is the sum of the prices of the two one-way

tickets. Data show that the majority of customers buy one one-way ticket at a time (the ratio of

one-way tickets sold to round-trip tickets sold is 13:1). Therefore, the products we consider are

tickets for a single flight from a specific origin to a specific destination.

7. Most flights are not full at departure time.
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8. The first two observations together with the previous observation indicate that if a customer

wants to travel, the customer will travel. Also, note that customers may book and then not ticket.

This behavior is addresssed by our booking-to-ticketing conversion model. Thus, most customers’

decisions to book or not to book are not affected by the offered assortments. Therefore, it seems

reasonable for our booking choice models to ignore the no-booking option.

9. Very few ticketed customers cancel or change their tickets before departure time, except for

customers who go-show before departure time. For example, the cancellation rate in 2011 was only

2.1% for airline XX. This behavior is possibly related to the fact that most customers book close to

departure time, and the availability of the option to book but not ticket. Therefore, in this paper,

we include only go-shows before departure time, and ignore ticket cancellations or changes before

the depature day.

2. Literature Review

There is a large literature on revenue management with airline applications. Here we give a brief

overview of some of this literature that intersects with our paper in various ways.

A classic paper on the implementation of a revenue management system at an airline is Smith

et al. (1992), based on work that won the Franz Edelman prize in 1991. A few other papers that

report revenue management research implemented at airlines are Alstrup et al. (1989), Smith

et al. (2001), Slager and Kapteijns (2004), and Vulcano et al. (2010). Our paper is similar to

that of Vulcano et al. (2010) in the sense that we also use discrete choice models for parallel

flights calibrated with airline data and we also use simulation to evaluate the performance of our

policies. However, we model some aspects not discussed in Vulcano et al. (2010): we explicitly

model competitor assortments, customers who book but do not purchase, no-shows, and go-shows.

In addition, our choice models address some issues not addressed in Vulcano et al. (2010): we

develop models that incorporate the idea that different customers have different preferences (taste

heterogeneity) for different departure times, we allow differences in price sensitivity depending on

when the customer books and what channel the customer uses, and we identified and modeled

discontinuous demand responses (spikes) for the cheapest available fare classes as well as for fully

refundable fare classes. Zhang and Cooper (2005) also considered discrete choice models for parallel

flights. They studied structural properties of a Markov decision process formulation, and they

compare a number of heuristics for their model.

We use discrete choice models to model booking choice, booking-to-ticketing conversion, and

no-show and go-show behavior. Discrete choice models have been used to predict travelers’ choices
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in transportation (Ben-Akiva and Lerman 1985) and customers’ choices from a set of products in

revenue management (Talluri and van Ryzin 2004). The classic multinomial logit (MNL) model

has been widely used due to its tractability, but it has a number of shortcomings, including the

independence from irrelevant alternatives (IIA) property, the assumption that each customer’s

choice set is known, and the assumption that all customers have the same preferences or taste

coefficients. To address these shortcomings a variety of other discrete choice models have been

developed, such as the nested logit (NL) model and mixed logit (ML) models (Train 2003, Greene

and Hensher 2003).

A number of recent papers, such as Rusmevichientong and Topaloglu (2012), Davis et al.

(2013a,b), Gallego and Topaloglu (2013), Li et al. (2013), and Rusmevichientong et al. (2013),

have addressed static assortment optimization problems under a variety of discrete choice models.

In this paper we consider dynamic assortment optimization problems under MNL, NL, and ML

choice models, where “dynamic” refers to the chosen assortments being a function of time.

3. The Optimization Problem

In this section we describe two optimization problems, a stochastic optimization problem and a

deterministic optimization problem. The stochastic optimization problem is much too intractable

to solve exactly, but is described here as the problem we would like to solve, and the objective

values of which are computed by a simulation described in Section 6 and used to compare the

performance of various policies. The deterministic optimization problem also involves probabilities,

but it is a more tractable approximation of the stochastic optimization problem.

3.1. The Stochastic Optimization Problem

There are a number of airlines, indexed by i ∈ I, selling tickets for travel on parallel flights in

a single origin-destination market. In this section, for ease of notation, airline XX for whom the

optimization problem is solved is indexed by i = 1, and −1 denotes the competitors {YY, ZZ}.

Airline i sells tickets for a set Fi of flights. Each flight f ∈ Fi can accommodate up to bf passengers.

Airline i has a set Ji of flight-fare class combinations, also called products, that the airline can

offer. Also, let f(j)∈ Fi denote the flight associated with flight-fare class combination j. Each unit

of product j ∈ Ji requires Bj units of capacity on flight f(j) (or any other flight if the customer

ends up traveling on another flight). The net revenue earned by selling a unit of product j ∈ Ji is

denoted by rj. The selling horizon is denoted with [0, T ], where T denotes the scheduled departure

time of the last flight in the time horizon. Let Tf ∈ [0, T ] denote the scheduled departure time of

f ∈ Fi. For each airline i there is a set Ki of sales channels that can be used to sell the airline’s
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products, for example, the airline’s own web site, the airline’s call center, various third party web

sites, and independent travel agents. Some channels, such as an airline’s own web site or call center,

are used by only one airline, and some, such as third party web sites, are used by multiple airlines.

Let Ik ⊂ I denote the set of airlines that use channel k ∈K :=∪i∈IKi.

Customer booking requests arrive in each channel k according to independent nonhomogeneous

Poisson processes with rates λk(t). For each time t ∈ [0, T ] and each sales channel k ∈ K, each

airline i∈ Ik chooses a set Ai,k(t)⊂ Ji of flight-fare class combinations to offer; Ai,k(t) is called the

assortment offered in channel k at time t. Of course, products in Ai,k(t) cannot belong to flights

that depart before time t. (Specifically, the airline in the case study closes all flights 30 minutes

before the scheduled departure time of the flight.) An airline may restrict attention to only certain

assortments, for example, many airlines restrict attention to nested-by-fare assortments, as follows:

Consider any two products j1 and j2 with f(j1) = f(j2) and rj1 > rj2 . A nested-by-fare assortment

A has the property that if j2 ∈A, then j1 ∈A. Let Ai,k(t)⊂ 2Ji denote the collection of assortments

that airline i considers at time t for channel k. Let Ak(t) := (Ai,k(t), i ∈ Ik) denote the list of

assortments offered by the airlines in channel k at time t. For any list of assortments A= (Ai, i∈ Ik)

in channel k, we sometimes write ∪A for ∪i∈IkAi. Given the offered assortments Ak(t) = A, a

customer who arrives at time t using channel k books alternative j with probability Pj:A(k, t)

(Pj:A(k, t) = 0 if j 6∈ ∪A). Then, the customer purchases alternative j with probability Pb2t
j,k (t), called

the booking-to-ticketing conversion probability.

The airline formulating and solving the revenue optimization problem does not know in advance

what assortments the other airlines are going to offer. Here we assume that the airline estimates

a probability distribution on the collection of assortments that the other airlines can offer at each

time in the booking horizon. For airline i and channel k ∈ Ki, let A−i,k(t) :=
∏
i′∈Ik\{i}

Ai′,k(t)

denote the collection of assortments that airlines other than i consider at time t for channel k,

let A−i,k(t) := (Ai′,k(t), i
′ ∈ Ik \ {i})∈A−i,k(t) denote the list of assortments offered by the airlines

other than i in channel k at time t, and let P̂i,k(t; ·) denote the probability distribution used by

airline i for the competitors’ assortments A−i,k(t).

Booking requests are indexed by n∈N . The corresponding customer is referred to as customer n.

In the context of the stochastic process, N denotes the set of booking requests in [0, T ]. Later

we also refer to a data set of bookings used for model estimation, and then N denotes the set

of transactions in the data set, and n is the transaction index. Let tn denote the arrival time of

booking request n, let kn denote the channel used, and let jn denote the alternative chosen (booked)
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by customer n, and let indicator ζn denote whether customer n pays for the ticket (ζn = 1) or not

(ζn = 0).

Most customers with purchased tickets show up for their flights. The rest of the customers do

not show up for their flights due to various actions by these customers. Four actions that have

significant frequencies in our data set are modeled in this paper. They are (1) go-show before

departure, (2) go-show after departure or no-show and change (not at the airport) to a later flight

(these two actions are treated in the same way and are henceforth referred to as “go-show after

departure”), (3) no-show with refund, and (4) no-show without refund. We now describe each of

these four actions in detail.

Show-up for departure. The customer departs with the originally ticketed flight unless the flight

is oversold. If the flight is oversold and the customer is bumped to a later flight, then the airline

pays a penalty e1jn,kn . Otherwise, if the flight is oversold and the customer does not get space on a

later flight, then the airline pays a penalty e0jn,kn .

Go-show before departure. A ticketed customer who go-shows before departure time shows up

at an airport counter on the departure date and then requests a seat on an earlier flight. The time

T gb
n < Tf(jn) (in the case study, T gb

n < Tf(jn) − 30 minutes) at which customer n go-shows before

departure time has cumulative distribution function F gb
jn,kn

(tn; ·). Thus F gb
j,k(t;Tf(j)) ≤ 1 can be

thought of as the fraction of customers who use channel k at time t to book and pay for product j

who go-show before the departure time of their flight. If there is a flight with an available seat

scheduled to depart in time interval (T gb
n , Tf(jn)) (in the case study, (T gb

n +30 minutes, Tf(jn)), then

the airline gives the customer a seat on such a flight, and the customer pays the change fee of cgbjn,kn .

Otherwise the customer departs with the originally ticketed flight in which case the customer pays

no change fee, or the customer is bumped to an even later flight and the airline pays a penalty

e1jn,kn , or the customer does not get space on a later flight, and the airline pays a penalty e0jn,kn .

Go-show after departure. A ticketed customer who go-shows after departure time shows up

at an airport counter after the departure time Tf(jn) of the customer’s originally ticketed flight

(and thus such a customer no-shows for the customer’s originally ticketed flight), but before T

on the departure date, and then requests a seat on a flight before T on the same day. The time

T ga
n > Tf(jn) (in the case study, T ga

n > Tf(jn) − 30 minutes) at which customer n go-shows after

departure time has cumulative distribution function F ga
jn,kn

(tn; ·) on the interval (Tf(jn), T ). Thus

F ga
j,k(t;T )≤ 1 can be thought of as the fraction of customers who use channel k at time t to book

and pay for product j who go-show after the departure time of their flight. If there is a flight with

an available seat scheduled to depart after time T ga
n (in the case study, T ga

n +30 minutes), then the
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airline gives the customer a seat on such a flight, and the customer pays the change fee of cgajn,kn .

If there is no seat on any flight before T , then customer receives a refund of ecjn,kn .

No-show with refund. A ticketed customer no-shows for the customer’s originally ticketed flight,

and requests a refund after the flight departs. The customer receives a refund of ecjn,kn .

No-show without refund. A ticketed customer no-shows for the customer’s originally ticketed

flight, and never requests a refund.

For each customer n with ζn = 1, let

ξn :=



s if the customer shows up for the departure of the customer’s ticketed flight,

gb if the customer go-shows before departure of the customer’s ticketed flight,

ga if the customer go-shows after departure of the customer’s ticketed flight,

c if the customer no-shows with refund,

n if the customer no-shows without refund.

We assume that each customer makes independent decisions, and therefore ξ1, ξ2, . . . are indepen-

dent. The probabilities Pc
jn,kn

and Pn
jn,kn

that ξn = c or ξn = n respectively are allowed to depend

on the product jn and the channel kn. Given jn = j and kn = k, probabilities Pc
jn,kn

and Pn
jn,kn

are

assumed to be independent of n. Note that 1−
(
F gb
j,k(t;Tf(j)) +F ga

j,k(t;T ) +Pc
j,k +Pn

j,k

)
represents

the fraction of customers who use channel k at time t to book and pay for product j who show up

on time for their flight (but do not go-show before departure).

For each customer n with ζn = 1, let fn denote the flight on which customer n travels, where

fn = 0 denotes that customer n does not travel on any flight, and by convention T0 >T . If ξn = s,

then Tfn ≥ Tf(jn), and if Tfn >Tf(jn) then it denotes that customer n was bumped off the customer’s

ticketed flight. If ξn = gb, then Tfn ≥ T gb
n , if Tfn = Tf(jn) then it denotes that customer n travels on

the customer’s originally ticketed flight in spite of the customer’s go-show before departure time,

and if Tfn >Tf(jn) then it denotes that customer n was bumped off the customer’s ticketed flight.

If ξn = ga, then Tfn >T
ga
n >Tf(jn). If ξn = c or ξn = n, then fn = 0.

For each k ∈K1, t∈ [0, T ], and A∈A1,k(t), let uA,k(t) = 1 if airline 1 decides to offer assortment

A to customers in channel k at time t, and uA,k(t) = 0 otherwise. Decision variable uA,k(t) is allowed

to be random, but must be a function of the information available to airline 1 at time t.

Then, the stochastic optimization problem can be formulated as follows:

max
u,fn

E

[∑
n∈N

ζn

{
rjn + cgbjn(kn)1{ξn=gb}1{Tfn<Tf(jn)}+ cgajn(kn)1{ξn=ga}1{fn 6=0}

−e1jn,kn
(
1{ξn=s}+1{ξn=gb}

)
1{Tf(jn)<Tfn≤T}− e

0
jn,kn

(
1{ξn=s}+1{ξn=gb}

)
1{fn=0}

−ecjn,kn
(
1{ξn=ga}1{fn=0}+1{ξn=c}

)}]
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s.t.
∑

A∈A1,k(t)

uA,k(t) ≤ 1 ∀ k ∈K1, t∈ [0, T ]

T gb
n < Tfn ∀ n∈N : ξn = gb

T ga
n < Tfn ∀ n∈N : ξn = ga∑

n∈N

ζnBjn1{fn=f} ≤ bf ∀ f ∈ F1

uA,k(t) ≥ 0 ∀ k ∈K1, t∈ [0, T ], A∈A1,k(t)

Note that jn depends on (uA,kn(tn),A∈A1,kn(tn)) and on A−1,kn(tn), and that the expectation E[·]

above is determined by all the probabilities, including the probabilities P̂1,k(t; ·) used by airline 1

to forecast the assortments offered by the other airlines.

3.2. The Deterministic Optimization Problem

In this section we present a deterministic or fluid optimization problem analagous with the stochas-

tic optimization problem described in Section 3.1. Customers are modeled as a fluid that arrives

in each channel k with rate λk(t). Given the offered assortments Ak(t) =A, a fraction Pj:A(k, t) of

these customers book alternative j, and a fraction Pb2t
j (k, t) of these customers purchase alternative

j. As before, the airline estimates a probability distribution on the collection of assortments that

the other airlines can offer at each time in the booking horizon. Specifically, let P̂i,k(t;A) denote

the probability used by airline i that the competitors will choose assortment A−i,k(t) =A for k ∈

Ki, t∈ [0, T ]. (Thus this deterministic or fluid optimization problem involves various probabilities.)

For each k ∈K1, t∈ [0, T ], and A∈A1,k(t), let uA,k(t) = 1 if airline 1 decides to offer assortment

A to customers in channel k at time t, and uA,k(t) = 0 otherwise. For each j ∈ J1, k ∈K1, and

f ∈ F1 ∪ {0}, let ysj,k,f denote the number of customers who use channel k to book and pay for

product j, who show up on time for their flight, and who end up traveling on flight f (recall

that f = 0 denotes that the customers are bumped and do not get to travel); let ygbj,k,f denote the

number of customers who use channel k to book and pay for product j, who go-show before the

departure time of their flight, and who end up traveling on flight f ; let ygaj,k,f denote the number

of customers who use channel k to book and pay for product j, who go-show after the departure

time of their flight, and who end up traveling on flight f ; let ycj,k denote the number of customers

who use channel k to book and pay for product j, who no-show for their flight, and who get a

cancellation refund; and let ynj,k denote the number of customers who use channel k to book and

pay for product j, who no-show for their flight, and who do not get a cancellation refund.

Then, the deterministic or fluid optimization problem can be formulated as follows:

max
u,y

∫ T

0

∑
k∈K1

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)
∑
j∈A

Pj:A∪A′(k, t)Pb2t
j (k, t)rj dt
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+
∑
j∈J1

∑
k∈K1

 ∑
{f∈F1 :Tf<Tf(j)}

cgbj,ky
gb
j,k,f +

∑
{f∈F1 :Tf>Tf(j)}

[
cgaj,ky

ga
j,k,f − e1j,k

(
ysj,k,f + ygbj,k,f

)]
−
∑
j∈J1

∑
k∈K1

{
e0j,k
(
ysj,k,0 + ygbj,k,0

)
+ ecj,k

(
ygaj,k,0 + ycj,k

)}
s.t.

∑
A∈A1,k(t)

uA,k(t) ≤ 1 ∀ k ∈K1, t∈ [0, T ]

∑
{f ′∈F1 :Tf ′≤Tf}

ygbj,k,f ′ ≤
∫ Tf

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)F gb
j,k(t;Tf )dt

∀ j ∈ J1, k ∈K1, f ∈ F1 : Tf <Tf(j)∑
f∈F1∪{0}

ygbj,k,f =

∫ Tf(j)

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)F gb
j,k(t;Tf(j))dt

∀ j ∈ J1, k ∈K1∑
{f ′∈F1 :Tf(j)<Tf ′≤Tf}

ygaj,k,f ′ ≤
∫ Tf(j)

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)F ga
j,k(t;Tf )dt

∀ j ∈ J1, k ∈K1, f ∈ F1 : Tf(j) <Tf∑
{f∈F1∪{0} :Tf(j)<Tf}

ygaj,k,f =

∫ Tf(j)

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)F ga
j,k(t;T )dt

∀ j ∈ J1, k ∈K1

ycj,k =

∫ Tf(j)

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)Pc
j,k dt ∀ j ∈ J1, k ∈K1

ynj,k =

∫ Tf(j)

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)Pn
j,k dt ∀ j ∈ J1, k ∈K1∑

{f∈F1∪{0} :Tf(j)≤Tf}

ysj,k,f +
∑

f∈F1∪{0}

ygbj,k,f +
∑

{f∈F1∪{0} :Tf(j)<Tf}

ygaj,k,f + ycj,k + ynj,k

=

∫ Tf(j)

0

λk(t)
∑

A∈A1,k(t)

uA,k(t)
∑

A′∈A−1,k(t)

P̂1,k(t;A
′)Pj:A∪A′(k, t)Pb2t

j (k, t)dt ∀ j ∈ J1, k ∈K1

∑
k∈K1

 ∑
{j∈J1 :Tf(j)≤Tf}

Bjy
s
j,k,f +

∑
j∈J1

Bjy
gb
j,k,f +

∑
{j∈J1 :Tf(j)<Tf}

Bjy
ga
j,k,f

 ≤ bf ∀ f ∈ F1

uA,k(t) ≥ 0 ∀ k ∈K1, t∈ [0, T ], A∈A1,k(t)

ysj,k,f ≥ 0 ∀ j ∈ J1, k ∈K1, f ∈ F1 ∪{0}

ygbj,k,f ≥ 0 ∀ j ∈ J1, k ∈K1, f ∈ F1 ∪{0}

ygaj,k,f ≥ 0 ∀ j ∈ J1, k ∈K1, f ∈ F1 ∪{0}

ycj,k ≥ 0 ∀ j ∈ J1, k ∈K1

ynj,k ≥ 0 ∀ j ∈ J1, k ∈K1

4. Data

Recall that there are three major airlines that we call XX, YY, and ZZ, in the market considered in

our project. The revenue management problem for airline XX is considered. For airline XX, we have

both booking and ticketing data. It shows for each customer, how many tickets the customer booked
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and how many the customer actually paid for. These data are used to estimate the booking-to-

ticketing conversion models. For airline YY and ZZ, we have only booking data, which is sufficient

because once a customer made a booking with a competitor airline, whether the customer pays

for the ticket or not will not have an impact on airline XX’s revenue. These booking data contain

the values of various factors that are important for the estimation of the models discussed in

Section 5.2.4.

Another type of data that are not usually available to researchers are availability data. Availabil-

ity data shows a snapshot, typically once per day, of the assortment being offered by each airline at

that time. The offer set sometimes changes during a day, and we also use customers’ booking data

to identify when such changes took place, and to construct the historical assortments Ai,k(t) for

each airline i in channel k as a function of time t. As discussed in Sections 5.3 and 5.2, availability

data are used to forecast competitor behavior, and to construct a choice set for each customer used

in the estimation of booking choice models.

We also have no-show and go-show data. For each no-show customer, the data indicate which of

the following four types the customer is: (1) Go-show before departure, (2) Go-show after departure,

(3) No-show with refund, and (4) No-show without refund. Section 3 in the online companion will

discuss in more detail how this data is used to estimate no-show and go-show models.

We have the data described above for both 2011 and 2012. The 2011 data were used to calibrate

the models that form the input of the deterministic optimization problem in Section 3.2. The 2012

data were used to calibrate the models that form the input of the simulation of the stochastic

optimization problem in Section 3.1. As described in Section 6, the simulation was used to test how

well the booking controls based on models estimated with 2011 data perform under 2012 customer

choice behavior.

5. Estimated Models

In this section, we discuss the estimation of models that are used as input for the stochastic

optimization problem presented in Section 3.1 and for the corresponding deterministic optimization

problem presented in Section 3.2. We obtain these estimates using the data sets described in

Section 4. Recall that the input parameters to our optimization models are arrival rates, competitor

assortment selection probabilities, booking choice probabilities, booking-to-ticketing probabilities,

and go-show/no-show probabilities. Since the arrival rates and these probabilities all depend on the

booking time (and many other factors), the input parameters are really input functions of time.

We assume that these functions are piecewise constant.
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In Section 5.1, we estimate arrival rates. In Section 5.2, we estimate customers’ booking choice

probabilities with three discrete choice models. In Section 5.3, we estimate competitors’ assortment

selection probabilities. In Section 5.4, we estimate booking-to-ticketing conversion probabilities.

We estimate on-show and go-show probabilities in the online companion.

5.1. Arrival Model

Our available data include the booking data (including the detailed booking time) of the whole

market, but not data about customers who enquired about ticket prices but who did not book.

Since airline XX is only one of three airlines in the market, and as we argued in the introduction,

most of the customers in this market appear to be business customers who are not very price

sensitive, the assortment provided by XX may not significantly affect the arrival rate to the whole

market. In addition, in this market all potential customers have the opportunity to book a ticket

and then not buy the ticket, and these data are available to us. Therefore, we think that most

potential customers in the market make bookings, and are thus recorded in the available data, and

hence we use the booking data of the market as the arrival data.

The arrival rate λk(t) for each channel k and each hour t before departure is calculated as the

average of the 39 observed arrivals in 2011 for the same channel and hour before departure. Figure 2

shows the hourly arrival rates for Monday flights. For confidentiality, the arrival data are scaled

by a factor. As we can see from the plot, most bookings (77.5% in this example) arrive within one

week of the departure day. The difference between weekday arrivals and weekend arrivals and the

fact that most of the bookings happen during the work day (with a noticeable dip during the lunch

hour) also suggest that most of the customers are business customers.

5.2. Booking Choice Models

In this section we introduce three customer choice models to determine the choice probabilities

Pj:A(k, t) introduced in Section 3.1. These models express the choice probabilities as a function

of attributes that are functions of observed factors, including customer-specific factors such as

booking channel and booking time, as well as alternative-specific factors such as price, change fee

and cancellation fee, frequent flyer mileage gain, departure times, etc.

Different choice models assume the availability of different amount customer information. We now

give a brief overview. Each customer who makes a booking request is associated with three types of

data. The first type of data is observed by the airline before the airline decides which products to

offer the customer. These data are called the customer class. Both the model of customer behavior

as well as the booking control may depend on the customer class. An important example of such a
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Figure 2 Hourly arrival rates for Monday flights

type of data is the following: The sales channel used by a customer is observed by an airline when

the customer makes a request, and is therefore part of the customer class. As another example,

in some cases the home base of the customer can be derived from the customer’s request: if the

customer requests a booking from A to B and B to A, then the airline considers the home base of

the customer to be A. In the network setting, both origin A and destination B are data that are

revealed by the customer when the request is made and that form part of the customer class. A

third example is the customer’s frequent flyer data, if the customer reveals a frequent flyer number

when the request is made. For the setting in this paper involving a single domestic market, with no

available frequent flyer data, the most important data in the customer class are the sales channel

used, and therefore we do not introduce notation for the customer classes besides the notation

for the sales channels. The second type of data associated with a customer request is the data

that are not observed before the airline decides which products to offer the customer, but that are

observed after the airline decides which products to offer the customer. The model of customer

behavior may depend on these data, but the booking control may not depend on these data. An

example is the customer’s frequent flyer data, if the customer reveals a frequent flyer number after

the airline makes an offer. In our study no such data were available. The third type of data is not

observed by the airline. This includes a quantity called the customer type, as well as a quantity

called the customer’s utility for each alternative, both of which are discussed in more detail at the

beginning of Section 5.2.3. Neither the model of customer behavior nor the booking control may

depend on customer type data, but as described later, we estimate probability distributions for

customer types using observed data.
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In Sections 5.2.1-5.2.3, we introduce three cusotmer choice models. The factors and attributes

that are common to the different booking choice models are discussed in Section 5.2.4. Then the

estimation results are compared and discussed in Section 5.2.6. Recall from Section 3.1 that for a

customer n from channel kn at booking time tn, Akn(tn) denotes the list of assortments offered by

all airlines to the customer. For ease of notation, let An =Akn(tn). We refer to An as the choice

set of customer n. Note that it has to hold that the customer’s actual choice jn must be in An. For

all three models, the attributes are indexed by m∈ {1,2, . . . ,M}.

5.2.1. The Multinomial Logit (MNL) Model One of the most popular discrete choice

models is the multinomial logit model. In this model, there is only one customer type. It is one

of the shortcomings of the MNL model, but it contributes to the tractability of the MNL model.

Let xn,j,m denote the value of attribute m for customer n and alternative j, and let βm denote

the weight of attribute m. Let β := (β1, . . . , βM)∈RM denote the parameter vector, and let xn,j :=

(xn,j,1, . . . , xn,j,M)∈RM denote the attribute vector for customer n and alternative j. Then vn,j :=

βᵀxn,j is called the systematic utility of customer n for alternative j. Since there is only one

customer type, β is the same for all customers. Variation in preferences across the population is

represented by i.i.d. additive Gumbel distributed random utilities ξn,j for each customer n and

alternative j; for more detail of the MNL model, see for example Ben-Akiva and Lerman (1985)

and Train (2003). Then the probability that customer n chooses alternative j ∈∪An is given by

Pj:An(kn, tn) =
exp(vn,j)∑

j′∈∪An exp (vn,j′)
=

exp(βᵀxn,j)∑
j′∈∪An exp (βᵀxn,j′)

. (1)

Another shortcoming of the MNL model is that it assumes that all customers n choose from the

assortments Ai,n offered by airline i. In the context of airline demand (and many other applications),

different customers consider different sets of alternatives, and the true choice sets considered by

customers are not observed (but some data related to the consideration sets may be observed). For

example, different customers consider different sets of departure times to be reasonable for their

purposes. Some customers are flexible and may consider all flights in a wide time window, whereas

other customers have tight schedules and want to depart as close as possible to a specific time.

These time preferences are not observed.

The following modeler’s selection of Ai,n was suggested in Vulcano et al. (2010): Given that

customer n booked a ticket from A to B for a flight departing on a particular day, Ai,n is the

set of all flights of airline i traveling from A to B on the same day. We used the same selection

of Ai,n for the MNL model results discussed in Section 5.2.6. However, the following intuitive

argument suggests that such a selection may produce biased parameter estimates. Suppose that
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the price of an alternative is an important attribute of the alternative. More specifically, suppose

that each customer chooses the cheapest ticket for a flight that departs in the customer’s interested

time window. Thus customers are quite price sensitive, with attention restricted to a subset of

alternatives. Now suppose that flights departing at different times of the day have different cheapest

available fares (which is often the case). In a data set of bookings, a significant fraction of customers

do not choose one of the cheapest tickets over all flights departing on the particular day (because

none of the cheapest tickets were for a flight departing in the customers’ time windows). If it is

assumed that each customer chooses from the set of all flights on the same day, then it appears that

customers are not very price sensitive, and as a result the estimated coefficients of price attributes

will be biased. As shown in Section 5.2.6, our results were consistent with this intuition. Next we

discuss a number of models that attempt to incorporate heterogeneity in customer preferences.

5.2.2. The Nested Logit (NL) model In the nested logit model, similar to the MNL model,

there is only one customer type. However, the NL model can capture preferences for subsets of

alternatives in a way that the MNL model cannot. Specifically, in the nested logit model, the set

of alternatives is partitioned into subsets called nests, indexed by l ∈ {1,2, . . . ,L}. For example,

different nests contain tickets for flights departing during different time windows. Correspondingly,

for each customer n, ∪An is partitioned into L nests denoted with An,l. In the NL model, variation

in preferences across the population is represented by additive random utilities ξn,j + ξn,l for each

customer n and alternative j ∈An,l, where ξn,j are i.i.d. Gumbel and ξn,l are i.i.d. Gumbel. Note

that in this model, different alternatives in the same nest have correlated utilities. For example,

if the value of ξn,l is large, then customer n has a preference for alternatives in nest l, and vice

versa. Thus, by choosing different nests to contain tickets for flights departing during different time

windows, the NL model can capture random preferences for different departure times. For example,

suppose that the nests represent departure time windows. A customer with a strong preference for

departure time window l = 1 has a large value of ξn,l for l = 1 and small values of ξn,l for other

values of l. A customer with a preference for either departure time window l = 1 or l = 2 but a

strong dislike for other departure time windows has large values of ξn,l for l= 1 and l= 2 and small

values of ξn,l for other values of l. A restriction of the NL model is that the set of alternatives has

to be partitioned, for example, the NL model cannot capture a setting in which some customers

prefer departure times between t1 and t3, some prefer departure times between t2 and t4, and some

prefer departure times between t3 and t5, where t1 < t2 < t3 < t4 < t5. For more detail of the NL

model, see for example Ben-Akiva and Lerman (1985) and Train (2003). The systematic utility of

customer n for alternative j ∈An,l is given by vn,j := βᵀxn,j/αl, where αl ∈ [0,1/α] is the parameter
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that represents the variation of preferences for alternatives in An,l, and α > 0 is a scaling factor.

Then the probability that customer n chooses alternative j ∈An,l is given by

Pj:An(kn, tn) =
exp(vn,j)∑

j′∈An,l
exp(vn,j′)

exp (ααlv̄n,l)∑L

l′=1 exp (ααl′ v̄n,l′)

=
exp(βᵀxn,j/αl)∑

j′∈An,l
exp(βᵀxn,j′/αl)

exp (ααlv̄n,l)∑L

l′=1 exp (ααl′ v̄n,l′)
,

where

v̄n,l := ln

 ∑
j∈An,l

exp(βᵀxn,j/αl)

 , ∀ l ∈ {1, . . . ,L}.

5.2.3. The Mixed Logit (ML) model The attribute coefficients β introduced in Sec-

tion 5.2.1 reflect the tastes of customers in evaluating attributes. A natural way for a choice model

to capture taste variation is to allow variation in the values of β. Thus, in the mixed logit model

there are multiple customer types, and different customer types have different values of the param-

eter vector β. We assume customers who request bookings are classified into a number of types.

Let T denote the set of customer types. The type of a customer is not observed by the airline.

We assume that a customer who arrives at time t using channel k has type τ ∈ T with probability

πk,τ (t). The customer’s type is determined before the customer observes the airlines’ assortments,

and thus πk,τ (t) is independent of the assortments. A classical example of customer type is the

following: A customer is either a “business customer” or a “leisure customer”. These type labels

are somewhat misleading, since the customer’s booking behavior determines the customer’s type

rather than the purpose of the customer’s trip. For example, a business customer has a desired

departure time, and wants a fully refundable ticket for the flight with departure time closest to

the desired departure time, irrespective of the prices of other alternatives. On the other hand, a

leisure customer has a more subtle trade-off among alternatives, taking into account prices, depar-

ture times, and other attributes. Another important example of customer type is the following:

A customer may not like all products in Pi equally, even if all were offered, but rather prefers

flights that depart between a time window [t1, t2] (e.g., all morning flights between t1 = 07 : 00am

and t2 = 11 : 00am) to the flights with departure times more separated from [t1, t2] (e.g., late night

flights between 21:00pm and 00:00am). Then the type τ of the customer determines the preferences

of the customer in evaluating departure times.

The type distribution πk,τ (t) determines the distribution of β; for the ML model we write πk,β(t).

The distribution πk,β(t) may be discrete or continuous, and is usually selected from a parameterized

family. An advantage of the ML is that one can approximate different true choice sets considered by

different customer types by including random alternative-specific coefficients βj for alternatives j,
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where a value of βj < −M for large M in effect removes alternative j from the customer type’s

true choice set. For example, to model departure time preferences, one can partition the departure

times into a number of time windows, and include coefficients βw for time windows w. A large

mean of βw corresponds to time windows w that are on average more popular, a large variance of

βw corresponds to time windows w that some customers strongly like and other customers strongly

dislike, and a large positive covariance of βw and βw′ corresponds to pairs of time windows w and w′

with similar preferences — some customers like both and other customers dislike both. For more

detail of the ML model, see for example Train (2003). The systematic utility of customer n for

alternative j is given by vn,j := βᵀxn,j, and is random (given the vector xn,j of attribute values) with

distribution determined by πkn,β(tn). Then the probability that customer n chooses alternative

j ∈∪An is given by

Pj:An(kn, tn) = Eπkn,β(tn)

[
exp (vn,j)∑

j′∈∪An exp (vn,j′)

]
= Eπkn,β(tn)

[
exp (βᵀxn,j)∑

j′∈∪An exp (βᵀxn,j′)

]
. (2)

5.2.4. Factors and Attributes Each of the booking choice models described above expresses

the choice probabilities Pj:An(kn, tn) as a function of attribute values xn,j,m, where xn,j,m denotes

the value of attribute m for customer n and alternative j. Each of these attributes is a function of

the observed values of several variables called factors. Table 1 lists the alternative-specific factors

(1–5) and the customer-specific factors (6–7) on which we obtained data and that we used to

encode attributes and estimate the discrete choice models.

Table 1 Alternative-specific and customer-specific factors used to encode attributes and estimate the discrete

choice models.

Factor Description

1 Ticket price the ticket fare, e.g., $1350
2 Departure time the time when a flight takes off, e.g., 09:00
3 Ticket change fee the fee charged for changing to another flight, e.g., $75
4 Mileage gain the mileage credits earned by a customer if the customer buys the

ticket, e.g., 1140 points
5 Carrier the airline that sells tickets, e.g., XX, YY, ZZ
6 Booking time the date, hour, minute at which the booking was made, e.g., Tues-

day 2011-06-07 09:20
7 Booking channel the channel via which a ticket is booked, e.g., airline website, call

center

We discuss the use of the factors in Table 1 in the online companion. Due to a lack of good

data, other studies such as Coldren et al. (2003) and Vulcano et al. (2010) estimated a single

price coefficient for all customers. However, data on customer-specific factors such as booking time



21

0

0.1

0.2

0.3

0.4

0.5

0.6

7 6 5 4 3 2 1

XX Actual

MNL no Spike

MNL Spike

Percentage

Fare Class

(a) XX, others, fare class 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

11 10 9 8 7 6 5 4 3 2 1

XX Actual

MNL no Spike

MNL Spike

Fare Class

Percentage

(b) XX, others, fare class 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

8 7 6 5 4 3 2 1

XX actual

MNL no Spike

MNL Spike

Percentage

Fare Class

(c) XX, others, fare class 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8 7 6 5 4 3 2 1

XX Actual

MNL no Spike

MNL Spike

Percentage

Fare Class

(d) XX, large websites, fare class 8

Figure 3 Comparison of distributions of XX bookings over fare classes of a flight via a particular booking channel

when a specific fare class is the cheapest available one for the same flight and channel

and booking channel allow us to study the effect of these factors on price sensitivity. Thus, in

each of the estimated models, for each combination of the days-until-departure, booking time-of-

day, booking weekday/weekend, and booking channel factors described above, there is a separate

attribute xn,j,m that is equal to the product of the price of alternative j and the indicator for the

specific combination, and a corresponding price sensitivity coefficient βm.

Each curve marked “XX actual” on Figure 3 represents the distribution (in percentage) of

customers who booked a more expensive ticket for some fare class of a XX flight through a particular

channel when a specific fare class is in actual the cheapest available one for the same flight and

booking channel. The curve is plotted based on the actual booking data for airline XX. For example,

Figure 3a shows that when fare class 7 is the cheapest available fare class for a flight, about 35%

of customers who make a booking for that flight book in fare class 7, and about 50% of customers

who make a booking for that flight book in fare class 1. It can be seen that a large portion of

customers either book the most expensive tickets (from fare class 1) or the cheapest tickets no

matter what fare class is the cheapest available one. We call this phenomenon “spikes”. Figure 3
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indicates that a good choice model should be able to capture spikes. Meanwhile, the distribution of

booked tickets over the fare classes is dependent on what fare class is the cheapest available one (as

indicated by Figures 3a and 3b) and what channel is used by customers (as indicated by Figures

3c and 3d). The phenomenon of spikes, to some extent, reflects the competition dynamics between

fare classes for each combination of carrier and booking channel. There are some other researchers

who have been aware of the problem. As emphasized by Coldren and Koppelman (2005), there

may exist prominent competition dynamics between fare classes within a flight and cross all the

flights on the specific departure day. Coldren and Koppelman (2005) did not model any of these

competition dynamics due to limited data. However with the good data, we are able to capture

spikes by using appropriate attributes. To this end, we consider the following two combinations of

factors as attributes: (i) the combination of carrier, the most expensive fare class (i.e., fare class

1 in our project) and booking channel and (ii) the combination of carrier, fare class, channel and

whether or not the fare class is the cheapest available one for a flight.

For each of combination (i), there is a separate attribute xn,j,m that is equal to an indicator for

the combination and a coefficient parameter βm. Note that carrier XX has observations from all

the five channels but carriers YY and ZZ only have observations from three channels 1, 2 and 5.

We also consider a separate indicator for each combination (ii) and an attribute parameter for the

indicator.

To further illustrate the importance of capturing spikes in a choice model, Figure 3 also shows the

distributions of bookings over fare classes, which are plotted based on the booking data simulated

by using the MNL model with combinations (i) and (ii) and the data predicted by the same choice

model without the combinations. The curves obtained by using the NL and ML models are very

close to the curves shown on Figure 3 and are thus omitted. It can been observed that the model

capturing spikes behaves well enough to describe the booking behaviors of customers.

5.2.5. Description of Estimated Choice Models In this section we describe in detail

various choice models that were estimated from the dataset of 2011. There are 89 price sensitivity

parameters, 11 parameters for each of combinations (i), 102 parameters for each of combinations

(ii), two parameters for carriers, one parameter for mileage gain and one for cancel fee, which gives

206 common parameters to all the four choice models. Combinations (i) and (ii) were introduced

at the end previous section. For all the following three choice models, we take departure times in

time window [21:00, 07:00) as the base case.

For the MNL model, there are 14 parameters to be estimated for attributes of departure times,

which gives 220 parameters to be estimated.
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For the NL model, we partition all the alternatives in An, where n ∈N , into L= 3 nests. Nest

l = 1 contains the alternatives with departure times 1-4, nest l = 2 contains the alternatives with

departure times 5-10, and nest l= 3 consists of the alternatives with departure times 11-15. We set

the scaling factor α= 10−4 and need to estimate dissimilarity factors αl, l = 1,2,3, 206 common

parameters and 14 parameters for departure times.

For the ML model, to capture the variation of customer preferences in evaluating departure times,

we consider a random parameter vector γn := (γn,1, γn,2, . . . , γn,15) for departure times for each

customer n∈N , where {γn}n∈N is a sequence of i.i.d. Gaussian vectors with mean vector µ∈R15

and covariance matrix Σ ∈ R15×15. We can represent γn = µ+ σξn, where ξn ∈ R15 is a standard

Gaussian vector and σ ∈R15×15 is the lower-triangular Cholesky factor such that Σ = σσᵀ. Let γ ∈

R206 denote the 206 common parameters that are assumed to be deterministic and the same across

the customer population N . Let xn,j ∈R206 denote the vector of attribute values except departure

times and yn,j ∈R14 denote the vector of attribute values for departure times for alternative j ∈An.

The systematic utility is written as vn,j = γᵀxn,j + γᵀ
nyn,j = γᵀxn,j + µᵀyn,j + ξᵀnσ

ᵀyn,j. We need to

estimate (γ,µ,σ) by maximizing the simulated log-likelihood function

max
γ,µ,σ

1

|N |
∑
n∈N

ln

(
1

B

B∑
i=1

exp (γᵀxn,jn +µᵀyn,jn + (ξin)ᵀσᵀyn,jn)∑
j∈An exp (γᵀxn,j +µᵀyn,j + (ξin)ᵀσᵀyn,j)

)
,

where B is the Monte Carlo integration sample size and {ξin}Bi=1 is a sequence of i.i.d. standard

Gaussian variates and independent for each n.

5.2.6. Estimation Results We describe in this section the estimation results for the three

choice models, including the price coefficient parameters that reflect customers price sensitivity as

well as the parameters for departure times that reflect the popularity of different departure time

windows.

Price Sensitivity. To better understand the importance of modeling the competition dynamics

within and across flights (or spikes), we estimate the models with combinations (i) and (ii) and

those without the combinations. The first result we learn from the estimation is that all the price

coefficients are negative for the MNL model with the combinations, which is consistent with our

intuition that the more expensive the ticket is, the less customers who will choose it. The MNL

model without the combinations, however, have some unexpected positive price coefficients.The

same phenomenon is meanwhile observed in the estimation results for the NL and ML models. It

is thus more reasonable to use the choice models with combinations (i) and (ii) and our discussions

are all based on the results for the choice models with the two combinations.
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Figure 4 Histograms of relative price coefficients for booking days until departure and booking time-of-day

As expected, the estimation results show that customers’ price sensitivity is dependent on book-

ing days until departure, booking time-of-day, booking day-of-week and channel. To illustrate the

dependences, we choose not to list all the 90 estimated price coefficients, but instead use the his-

togram of relative price coefficients for each of the four factors. Figure 4a shows the the histogram

of price coefficients for booking days until departure [7,13] and [14,∞] relative to the price coef-

ficients for [0,6]. A relative price coefficient is computed as the scaled difference between a price

coefficient for [7,13] or [14,∞) and a price coefficient for the base case [0,6] provided that the two

prices have the same values in booking time-of-day, booking day-of-week and channel. For exam-

ple, the price coefficient of ([7,13], [00:00,09:00), weekday, others) and that of ([0,6], [00:00,09:00),

weekday, others) are -7.2397 and -4.8802, respectively. As a result, the price coefficient of ([7,13],

[00:00,09:00), weekday, others) relative to ([0,6], [00:00,09:00), weekday, others) is −7.2397+4.8802
7.2397

=

−0.3259. As Figure 4a shows, most of the bars are located at the left of zero, indicating a trend

that the customers who book earlier are more price sensitive than the customers who book later.

Figure 4b shows the histogram of relative price coefficients for booking time-of-day [00 : 00,09 : 00)

and [18 : 00,24 : 00) to the base case [09 : 00,18 : 00). As Figure 4b indicates, the customers who

book after and before work are more price sensitive than the customers who book during work

hours.

Figure 5a shows the histogram of price coefficients for weekend relative to the price coefficients for

weekday. Again, most of the bars are located at the left of zero, which indicate that the customers

who book in the weekend are more price sensitive than those who make bookings on weekdays.

The results are consistent with our intuition. Figure 5b shows the histograms of price coefficients

for channels, others, airline website, large and small websites, relative to the price coefficients for
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Figure 5 Histograms of relative price coefficients for booking day-of-week and channel

call center. It can be observed that the customers who book through the four channels are more

price sensitive than the customers who book via call center.
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Figure 6 Histograms of relative price coefficients for the NL and ML models

Figure 6 shows the histograms of price coefficients estimated for the NL and MNL models relative
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to the price coefficients for the MNL model. The relative price coefficients for the ML model are

computed as the scaled difference between the price coefficients for the ML model and the price

coefficients for the MNL. For the NL model, the relative price coefficients are computed as the

scaled differences between βNL/αl and βMNL, where l= 1,2,3, and βNL and βMNL are the estimated

vectors of price coefficients for the NL and MNL models, respectively. Figure 6 shows that the price

coefficients for the NL and ML models are more negative than the price coefficients for the MNL

model (most bars are located at the left of zero), which indicates that the NL and ML models can

better capture the variation in preferences of customers in departure times.

Departure Time Popularity. Table 2 shows the parameter coefficients for departure times

with [21 : 00,07 : 00) as the base case. The first column shows the index of each departure time

window. As Table 2 shows, the MNL, NL and ML model estimation results indicate that the flights

departing during time windows 1,3,9 are the most popular among all the flights.

Table 2 Departure time coefficients for the MNL, NL and ML models

Index Time window MNL NL ML

1 [07 : 00,08 : 00) 1.09650 3.02554 1.13200
2 [08 : 00,09 : 00) 0.81833 2.84397 0.86406
3 [09 : 00,10 : 00) 0.99187 3.03922 1.04250
4 [10 : 00,11 : 00) 0.94432 3.02132 0.99750
5 [11 : 00,12 : 00) 0.71482 3.07456 0.83717
6 [12 : 00,13 : 00) 0.62374 2.94590 0.75148
7 [13 : 00,14 : 00) 0.43684 2.75186 0.56319
8 [14 : 00,15 : 00) 0.79139 3.17591 0.93265
9 [15 : 00,16 : 00) 0.93135 3.33490 1.05930
10 [16 : 00,17 : 00) 0.91611 3.29911 1.05450
11 [17 : 00,18 : 00) 0.81184 0.78556 0.94122
12 [18 : 00,19 : 00) 0.57137 0.64439 0.62031
13 [19 : 00,20 : 00) 0.76000 0.74791 0.86083
14 [20 : 00,21 : 00) 0.40656 0.42899 0.43594

Figure 7 shows a decreasing trend between correlation coefficients of departure time windows

and the distances between indices of departure time windows for the estimated ML model. As the

figure indicates, as two flights depart with a bigger time gap, the less correlated the two departure

times are. In other words, customers who choose a particular flight would prefer the flights with

departure times closer to the chosen flight to those with departure times more separated from the

chosen one.
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Figure 7 Correlation coefficient v.s. distance between indices of departure times for the ML model

5.3. Competitor Model

The booking choice models discussed in Section 5.2 enables us to compute choice probabilities of

the form Pj:Ai∪A−i(k, t). In the optimization problem, Ai is determined by the decision variables of

airline i, but A−i is forecasted by airline i using a probability distribution P̂i,k(t;A−i).

First consider the easier case: Suppose that channel k is exclusive to airline i, such as the web

site or call center of airline i. In that case P̂i,k(t;∅) = 1 for all t.

Next consider the case in which channel k is shared among the airlines, such as third party web

sites. In that case, airline i uses the empirical distribution based on observed data of competitors’

assortments for departures on a particular day of the week offered in channel k at times t in

the booking horizon for P̂i,k(t;A−i). For example, airline XX has daily snapshots of competitors’

assortments offered in channel k for 39 weeks in 2011 (April to December). Thus, for any given

departure day of the week (for example Monday departures), and for any number of days before

departure (for example the Friday 3 days before departure), airline XX has 39 observations in

the data set of the assortments that airlines YY and ZZ offered at this time t in the booking

horizon (for example, 39 Fridays in the data set on which airlines YY and ZZ offer assortments in

channel k for departure on the following Monday). Hence P̂1,k(t;A) = 1/39 for each shared channel

k ∈K1, each t∈ [0, T ], and each competitors’ assortment A∈A−1,k(t) observed in the data set for

channel k and time t. Note that airline XX uses the joint empirical distribution for the assortments

of airlines YY and ZZ, because one airline’s offered assortment may influence the other airline’s

offered assortment, especially when one airline (YY) is larger than the other (ZZ), as is the case

in the considered market.
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Therefore the probability P̄j:Ai(k, t) that a customer who uses shared channel k at time t in the

booking horizon chooses alternative j ∈Ai is given by

P̄j:Ai(k, t) =
∑

A−i∈A−i,k(t)

P̂i,k(t;A−i)Pj:Ai∪A−i(k, t).

5.4. Booking-to-Ticketing Conversion Model

When customers finally chooses a ticket out of the consideration set of choices and make the

booking, they do not need to provide the payment information immediately. For each booking,

there is a time limit before which the price at the booking will be guaranteed. If the customers do

not make the payment before the time limit, the booking will be cancelled automatically without

any charge to the customers. When a booking finally gets paid by the customer, we call it a

ticketing.

In 2011 and 2012, the booking-to-ticketing ratios are 50.79% and 51.22%, respectively. These

low ratios imply that our model has to distinguish between booking and ticketing. To model the

booking-to-ticketing conversion, we will use the binary logistic regression model. In the following,

we show the relationship between the booking-to-ticketing ratio and various booking attributes.

Figure 8a plots the booking-to-ticketing ratios for different fare classes in 2011 and 2012. The

fare classes are sorted by their prices in descending order. It can be seen from the figure that

the booking-to-ticketing varies across different fare classes. Generally the customers who book the

cheaper tickets (on the right of the figure) are less likely to purchase their tickets finally than those

who book the expensive tickets.
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Figure 8 Booking-to-Ticketing percentage v.s. different factors

Figure 8b plots the booking-to-ticketing ratios for different booking time sections in year 2011

and 2012. The figure clearly shows that the customers who book the tickets during the day (from
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9am to 6pm) are more likely to purchase the tickets than customer who book the ticketing during

in the early morning or late evening. This is intuitively correct because customers booking the

tickets during the day are probably business travelers and are more determined to purchase the

ticket once they book it.

Figure 8c plots the booking-to-ticketing ratios versus number of days in advance of the booking.

Clearly, customers who book the tickets earlier are less likely to purchase the tickets finally. This

may be because there are more leisure customers than business customers to book tickets early

and leisure customers change their ideas more often.

Other factors that are significant to booking-to-ticketing behavior include: month of the booking

time, weekday of the booking time, number of days in advance of the booking time, and the booking

channel. All these attributes are treated as nominal variables in the binary logistic regression.

The details of estimation model and its effectiveness is presented in the online companion of the

paper.

6. Simulation

In this section, we discuss the results of simulations that approximate the objective of the stochastic

optimization problem described in Section 3.1. For the study, we selected a typical Monday in

2012 and considered bookings for all the flights from A to B scheduled to depart on the selected

Monday. The simulation used the following models:

1. For the market booking arrival times, the simulation used the actual customer booking times

for the flights on the selected Monday.

2. For airline XX assortments, we used the following 7 booking policies:

(a) 2012 actual policy: The actual assortments offered by airline XX during the booking

horizon for the flights on the selected Monday.

(b) 2011 MNL policy: the fluid booking policy obtained by calibrating all models with 2011

data and then solving the deterministic problem with a MNL model of booking choice behavior.

(c) 2011 NL policy: the fluid booking policy obtained by calibrating all models with 2011

data and then solving the deterministic problem with a NL model of booking choice behavior.

(d) 2011 ML policy: the fluid booking policy obtained by calibrating all models with 2011

data and then solving the deterministic problem with a ML model of booking choice behavior.

(e) 2012 MNL policy: the fluid booking policy obtained by calibrating all models with 2012

data and then solving the deterministic problem with a MNL model of booking choice behavior.

(f) 2012 NL policy: the fluid booking policy obtained by calibrating all models with 2012

data and then solving the deterministic problem with a NL model of booking choice behavior.
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(g) 2012 ML policy: the fluid booking policy obtained by calibrating all models with 2012

data and then solving the deterministic problem with a ML model of booking choice behavior.

3. For airline YY and ZZ assortments, the simulation used the actual assortments offered by

airlines YY and ZZ during the booking horizon for the flights on the selected Monday.

4. For booking choice behavior, the simulation used the three choice models described in Sec-

tion 5.2:

(a) MNL model calibrated with 2012 data (2012 MNL behavior),

(b) NL model calibrated with 2012 data (2012 NL behavior),

(c) ML model calibrated with 2012 data (2012 ML behavior).

5. For booking-to-ticketing conversion, the simulation used the model described in Section 5.4,

calibrated with 2012 data.

6. For no-show and go-show behavior, the simulation uses the model described in Section 3 in

the online companion, calibrated with 2012 data.
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Figure 9 Simulation results

Figure 9a shows the effect of resolving the deterministic optimization problem a number of times

during the booking horizon for various combinations of policy and booking choice behavior. Re-

optimization seems to increase revenue with a small amount, but the incremental benefit seems

insignificant after a few times. In the simulation runs, we re-optimized daily during the last week

before departure for all choice models except for the mixed logit model.

Table 3 gives the simulated sample average revenues of airline XX when the airline either offers

the assortments that it actually offered during the booking horizon for the flights of the selected

Monday (2012 actual), or the airline uses one of six policies based on models calibrated with
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Table 3 Simulated sample average revenues (in millions) of airline XX when the airline offers assortments using

either its observed policy (2012 actual) or one of three policies based on solving a deterministic opti-

mization problem using models calibrated with 2011 and 2012 data (corresponding to different rows in

the table), and with customers making booking choices using one of three choice models (corresponding

to different columns in the table).

MNL NL ML MNL NL ML

2012 actual 3.68 3.66 3.67 2012 actual 3.68 3.66 3.67
2011 MNL 3.90 3.67 3.88 2012 MNL 4.07 3.82 4.04
2011 NL 3.81 3.61 3.76 2012 NL 3.76 3.76 3.72
2011 ML 3.86 3.64 3.86 2012 ML 4.05 3.79 4.04

respectively 2011 or 2012 data, a MNL, NL, or ML model of booking choice behavior, and solving

a deterministic optimization problem. The sample averages reported in both Table 3 were obtained

with a sufficient number of replications such that the sample averages of revenue differences between

the MNL, NL, or ML policies and the actual policy was greater than 3 times the standard deviations

of the sample averages of these revenue differences. The only exception was the case of the 2011

MNL policy under 2012 NL booking choice behavior.

Note that under MNL or ML booking choice behavior, all other policies perform significantly

better than the actual policy. However, under NL booking choice behavior, the 2011 NL and 2011

ML policies perform worse than the actual policy, the 2011 MNL policy performs about the same

as the actual policy, and all the 2012 policies perform better than the actual policy. Thus all 2012

policies surpass the the actual policy under all booking choice models considered. Also, in all but

two settings do the 2012 policies perform better than the corresponding 2011 policies. In addition,

the MNL policy performs better than the ML policy which in turn performs better than the NL

policy in all cases. That suggests that in order to obtain higher revenue, it helps to use more up-to-

date models to generate the policy, even if the booking choice model is structurally incorrect and

simpler than the actual choice behavior. We were surprised that the policies based on the simpler

MNL model outperform the policies based on the more sophisticated models representing the more

intuitively appealing customer choice behavior, even when the simulated behavior was based on

the more sophisticated models.

Also, recall that most customers in this market seem to be business customers, and that most

customers in this market book quite close to departure time when typically only expensive tickets

are available (often only the highest fare class is available). Consequently, most tickets are sold

at the maximum price. Given this situation, it is to be expected that the airline’s revenue in this

particular market cannot be increased by much. Even when our policies perform better than the

actual policy, we can surpass their revenue by only a little.
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Figure 9b shows the distribution of fare classes sold by airline XX under MNL booking choice

behavior. Each line represents a different policy used by airline XX in the simulation. We can see

that more than 50% of tickets are sold at full price (fare class 1). Under our policy more tickets are

sold for fare class 10 compared with the actual policy. Our policies rarely offer fare classes cheaper

than class 10. Under the actual policy quite a number of tickets are sold for fare classes 11, 12 and

13. It suggests that airline XX can increase revenue by making the cheapest 3 fare classes available

less often.
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