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We propose a robust optimization approach to minimize total propagated delay in the aircraft routing

problem, a setting first developed by Lan et al. (2006) and then extended by Dunbar et al. (2012, 2014).

Instead of minimizing the expected total propagated delay by assuming that flight leg delays follow specific

probability distributions, our model minimizes the maximal possible total propagated delay when flight leg

delays lie in a pre-specified uncertainty set. We develop exact and tractable solution approaches for our

robust model. The major contribution of our model is that it allows us to explicitly model and handle

correlation in flight leg delays (e.g., due to weather or various air traffic management initiatives) that existing

approaches cannot efficiently incorporate. Using both historical delay data and simulated data, we evaluate

the performance of our model and benchmark against the state-of-the-research stochastic approach (Dunbar

et al. 2014). In most of the cases, we observe that our model outperforms the existing approach in lowering

the mean, reducing volatility, and mitigating extreme values of total propagated delay. In the cases where a

deficit in one of the three criteria exists, gains in the other two criteria usually offset this disadvantage. These

results suggest that robust optimization approaches can provide promising results for the aircraft routing

problem.
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1. Introduction

Airline delays are prevalent and costly. In 2013, almost one out of every four flight legs operated

by major U.S. carriers arrived more than 15 minutes late; of these delayed flights, one-third are

a result of propagated delay: the late arrival of an aircraft causing a late departure (Bureau of

Transportation Statistics 2013). One of the key drivers for these propagated delays is that airlines

have in the past employed optimization models in an attempt to maximize profit; this has often

led to the creation of tight schedules in an attempt to increase aircraft utilization and decrease

crew salaries for time on the ground (Klabjan et al. 2001). As a consequence, delays propagate

very rapidly throughout the network. This in turn leads to significant costs for an airline, such as

additional pay for the crew, customer dissatisfaction, and further decreased utilization of aircraft

due to flight cancellation.

To mitigate the discrepancy between what is planned and what actually happens, the research

community has developed robust planning methods to pro-actively consider such delays and dis-
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ruptions. These methods create schedules with the objective of constructing plans that have one

of two kinds of robustness built in: (1) ease of repair once disrupted or (2) diminished propensity

of delay disturbances. Within the first category, Rosenberger et al. (2004) develops a string-based

fleet assignment models that embed many short cancellation cycles and limit the number of aircraft

that can serve each hub. Such characteristics prevent cancelling a series of flights and isolate the

disruption to a particular hub. Smith and Johnson (2006) introduce the concept of “station purity”

which limits the number of fleet type that can serve each aiport. This creates additional aircraft

swapping opportunities. Shebalov and Klabjan (2006) proposes a robust crew pairing model that

maximizes the number of crews that can potentially be swapped in operations. Yen and Birge

(2006) develops a two-stage stochastic integer program with recourse for crew scheduling prob-

lem. Their model produces robust crew schedule by incorporating disruptions in the evaluation of

crew schedules during the long-range planning phase. Recently, Froyland et al. (2013) presents a

recoverable robust aircraft routing model as a two-stage stochastic program. They explicitly model

aircraft routing deicision in the first stage, and a full set of recovery operations including flight

cancellation, delay, and aircraft swapping in the second stage recourse problem.

Our line of research falls into the second category, where we aim to come up with airline schedule

that is less susceptible to delay disturbance. One existing idea in this category is to reduce delay

propagation by re-timing flight schedule. Ahmadbeygi et al. (2010) uses a propagation tree to

minimize propagated delay so that slack in the schedule can be re-allocated to where it is required

most. In this research, we are not going to study the re-timing idea. Instead, the focus of this

paper is on building robustness into the aircraft routing problem to protect against propagated

delay. Aircraft routing is a critical airline planning phase in which the goal is to create a sequence

of flight legs to be operated by individual aircraft such that each flight is covered in exactly one

routing and all aircraft are properly maintained. As Lan et al. (2006) indicate, this problem can

usually be cast as a feasibility problem, thus providing flexibility to achieve desired robustness by

designing an appropriate objective function. To illustrate the impact of aircraft routing on delay

propagation, suppose two connecting fights are close to each other with respect to timing (the

arrival time of the first flight is very close to the departure time of the second flight). In this case,

it is not desirable to fly both using a single aircraft, because even a small amount of delay from

the first flight will end up propagating to the second flight.

The idea of reducing propagated delay through clever routing is not new. Some of the pioneers

include Lan et al. (2006), who develop a stochastic integer program to minimize the total expected

propagated delay along aircraft routes, where all the flight leg delays are fitted as independent

log-normal distributions using historical data. To solve the program, they design an approximation

algorithm based on column generation. To the best of our knowledge, there is no efficient solution



Yan and Kung: Robust Aircraft Routing 3

approach existed that can solve this model to optimality, even when flight leg delays are assumed

to be independent random variables. This is perhaps due to the nonlinearity in the computation

of propagated delay.

Later on, Dunbar et al. (2012) propose an improved solution approach to solve a deterministic

integrated aircraft routing and crew pairing problem to minimize total propagated delay, given

that flight leg delays are known to be constant. This work was recently extended to incorporate

stochastic flight leg delay information (Dunbar et al. 2014). They use historical flight leg delay

data to construct random scenarios and develop two algorithms to solve the stochastic program.

Borndörfer et al. (2010) develop an alternative robust aircraft routing formulation whose objective

is to minimize the sum of the probability of when propagated delay is positive over all flights, assum-

ing that flight leg delays follow certain independent probability distributions. They demonstrate

the effectiveness of their model in reducing the amount of propagated delay through computa-

tional experiments, but in theory it is unclear how this objective function is related to the actual

propagated delay.

In this work, we depart from previous methods (Lan et al. 2006, Dunbar et al. 2014) that

use stochastic optimization to minimize the expectation of propagated delay. We instead utilize

robust optimization to minimize the maximal possible propagated delay. In contrast to the previous

literature, which models flight leg delays as probability distributions, we utilize uncertainty sets to

capture the stochasticity of flight leg delays. The major motivation of applying robust optimization

to the aircraft routing problem comes from the ability to handle correlation in flight leg delays.

Flights arriving to the same airport at similar times are usually delayed due to various air traffic

management initiatives or inclement weather. Incorporating delay correlation into robust aircraft

planning could provide additional benefits. As mentioned earlier, no efficient methods capable of

dealing with delay correlation data have been explored in the robust aircraft routing literature.

On the other hand, robust optimization has been successfully applied to a number of application

areas where the problems are combinatorially hard and involve correlated and complex uncertainty

(Bertsimas et al. 2011). Although a major criticism of the robust optimization-based approach is the

conservativeness of optimizing against the worst case as opposed to the expectation, under many

circumstances, it may still perform better than stochastic optimization in expectation due to proper

utilization of correlation data. This is mainly due to the added tractability that robust optimization

enjoys, which allows it to handle complex uncertainty. Furthermore, additional protection is built

into robust optimization, especially when realized data differs significantly from historical data

(Bertsimas and Thiele 2006, Bertsimas et al. 2013b).

Applying robust optimization to the aircraft routing problem is fairly new. Until now, only one

study (Marla and Barnhart 2010) has considered this approach. They compare the performance of
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three different classes of models: 1) chance-constrained programming, 2) robust optimization, and

3) stochastic optimization (Lan et al. 2006). In their consideration of robust optimization, they

model flight leg delays using a budget uncertainty set developed by Bertsimas and Sim (2004).

Although their conclusions do not favor the robust optimization approach, we believe that by

modeling uncertainty sets differently and solving the resultant robust problem cleverly, we may

still be able to improve upon existing methods. Furthermore, we aim to provide comprehensive

benchmarks to better evaluate the value of this approach.

The remainder of this paper is organized as follows. In Section 2, we present our robust formula-

tion of the robust aircraft routing problem in detail. We also discuss how to model the uncertainty

set that captures flight leg delays. Our uncertainty set is a polyhedral set based on the Central Limit

Theorem and incorporates correlation structure in flight leg delays. In Section 3, we develop an

exact decomposition solution approach for our robust model based on column-and-row generation.

We also discuss detailed computational approaches to solving the resulting separation and pric-

ing sub-problems. In Section 4, we conduct extensive computational experiments to evaluate the

benefits of our robust model and benchmark it against a state-of-the-research model. We conclude

with a discussion in Section 5.

2. The Robust Aircraft Routing Problem Formulation

In this section, we describe our formulation for the robust aircraft routing problem using the

framework of robust optimization. We first outline our mathematical formulation and then discuss

how we model and construct uncertainty sets for flight leg delays.

2.1. Robust Aircraft Routing Formulation

The aircraft routing problem can be formally stated as follows: given a set of aircraft of a specific

fleet type and a set of flights that must be operated, determine how the fleet can be routed so that

each flight leg is included in exactly one aircraft routing, and all aircraft are properly maintained.

Among all feasible assignment of aircraft to routes, we seek the one that incurs the least amount

of total propagated delay.

We denote by R the set of all feasible routes, F the set of flights, and N the total number

of available aircraft. For each r ∈ R, F (r) represents the sequence of flights along route r. All

maintenance-feasible routes can be represented by the columns of an |F| × |R| binary matrix A,

where Ai,j = 1 if route j visits flight i, and Ai,j = 0 otherwise. Binary decision variables xr denote

whether or not route r is chosen in the optimal solution, with xr = 1 if it is selected, and xr = 0

otherwise. As in Lan et al. (2006) and Dunbar et al. (2012), we consider two kinds of delay in our

model:
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1. primary delay, denoted dj for each flight leg j ∈F , which includes en-route delay, passenger

connection delay, ground handling delay, and other delays that are not a function of routing.

2. propagated delay, denoted prj for flight leg j ∈ F (r) on route r ∈R, represents the amount of

delay propagated to flight j caused by the late arrival of the upstream flight.

Given flight leg primary delay d ∈ R|F|+ , the propagated delay pr(d) ∈ R|F (r)|
+ , r ∈ R can be

calculated iteratively as a function of d. Suppose flights (i, j) are two consecutive flights on route r,

slacki,j denotes the slack time for a connection (i, j), which is the difference between the scheduled

arrival time of flight i and the scheduled departure time of flight j, minus the mean turnaround

time for the corresponding aircraft type. The propagated delay to flight j from flight i then follows

the expression

prj(d) = max{0, pri (d) + di− slacki,j}, ∀(i, j)∈ r,∀r ∈R. (1)

With the above notation, given flight leg delays d, we write the deterministic aircraft routing

problem (AR) with the objective of minimizing total propagated delay as the following integer

program:

(AR) min
x

∑
r∈R

cr(d)xr =
∑
r∈R

∑
i∈F (r)

pri (d)xr (2)

s.t. Ax = e (3)∑
r∈R

xr ≤N (4)

x∈ {0,1}|R|

Objective (2) is the sum of propagated delay over all flights, given constant flight leg primary delays

d. Constraints (3) are the flight cover constraints that ensure that each flight leg must be covered

by only one aircraft routing. Constraints (4) are the fleet count constraints that keep the total

number of aircraft used to be less than or equal to the number of available aircraft. To enhance the

robustness of this model against all flight leg primary delays lying in a pre-specified uncertainty

set U , we consider the following robust aircraft routing (RAR) formulation:

(RAR) min
x

max
d∈U

∑
r∈R

cr(d)xr =
∑
r∈R

∑
i∈F (r)

pri (d)xr (5)

s.t. Ax = e (6)∑
r∈R

xr ≤N (7)

x∈ {0,1}|R|

Objective (5) is to minimize the maximum possible total propagated delay when individual primary

flight delays d are drawn from the uncertainty set U .



Yan and Kung: Robust Aircraft Routing

2.2. Modeling Uncertainty Set U for Flight Leg Primary Delays d

In contrast to existing literature (Lan et al. 2006, Borndörfer et al. 2010), in which it is assumed

that primary delays on flight legs d are independent for the purposes of tractability, we believe

that flight legs have a clear dependence structure that should be accounted for in order to improve

solution quality.

As an example, consider two different flights arriving to the same airport within the same hour.

Both of these flights will be affected by the same weather conditions – one of the main drivers of

primary delay – and may be delayed by similar amounts of time. Furthermore, various air traffic

management initiatives are designed to delay flights which share the same characteristics. For

instance, ground delay programs (GDPs) assign delays to flights entering into the same destination

airport, and airspace flow programs (AFPs) control flights flying through the same flow constrained

area (FCA). Moreover, different flow management programs often have complex interactions with

each other (Barnhart et al. 2012). Thus, correlation of primary delay between different flights is a

natural phenomenon that should be considered when generating aircraft routes.

With this insight in mind, we allow covariance data to play a central role in our uncertainty sets.

Using historical schedule data from the Airline Service Quality Performance (ASQP) database,

we first compute the primary delay for each flight leg by subtracting the propagated delay from

total arrival delay based on the algorithm provided in Lan et al. (2006). We then calculate the

sample means µ̂∈R|F|+ of primary delays for each flight leg and create a sample covariance matrix

Σ̂� 0, Σ̂∈R|F|×|F|. Using this data, we create the following uncertainty sets for flight leg delays d,

where C = Σ̂−
1
2 , and σ̂f denotes the standard deviation of the primary delay for flight f ∈F :

Up :=

{
d∈R|F|+ | ‖C(d− µ̂)‖p ≤

√
|F| ·Γ;

∣∣∣∣df − µ̂fσ̂f

∣∣∣∣≤ Γ,∀f ∈F
}
, (8)

where p ∈ [0,+∞], Γ ∈ [0,+∞) are two exogenous parameters. The first constraint in the uncer-

tainty set is inspired by the Central Limit Theorem and is commonly used in the robust optimiza-

tion literature. To see this, when primary leg delays d are uncorrelated, C = diag( 1
σf

)f∈F , the first

constraint is reduced to ‖diag( 1
σf

)f∈F(d− µ)‖p ≤
√
|F| · Γ. In the case p= 2, this uncertainty set

is an ellipsoid centered around µ, where the length of each semi-principal axis is the value of the

standard deviation of primary delays for the corresponding particular flight. When the primary

delays are correlated, the uncertainty set would correspond to a stretching and rotation of the

ellipsoid. For example, when primary delays for two flights are positively correlated, the uncer-

tainty set would capture simultaneous large and small delays for pairs of correlated flights and

would lose some regions where one flight delay is large, and the other is small, and vice versa. We

also add box constraints for each individual primary delay df to control the degree to which each
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individual primary delay can vary from its historical mean. The parameter Γ, commonly referred

to as the budget of uncertainty, controls the protection level we want: the larger the Γ, the more

conservative we are in the sense that we protect against delays that are allowed to lie in a larger

set. For example, for this Central Limit Theorem set (8), Γ = 3 usually gives us a high level of

protection when the data follows a normal distribution, because almost all of the probability mass

lies in the range of [µ− 3σ,µ+ 3σ] for normal random variables. We refer interested readers to

Bertsimas et al. (2004) for more details regarding this uncertainty set.

We choose p= 1 (L1 norm) and introduce auxiliary variables yi, i ∈ {1, · · · , |F|} so that U can

be equivalently formulated as a polyhedral set:

U :=

{
d∈R|F|+ | ∃y ∈R|F| s.t.

|F|∑
i=1

yi ≤
√
|F| ·Γ;±cTi (d− µ̂)≤ yi,∀i∈ {1, · · · , |F|};

∣∣∣∣df − µ̂fσ̂f

∣∣∣∣≤ Γ,∀f ∈F

}
,

(9)

where cTi is the ith row of matrix C.

3. Solution Approach

In this section, we describe our solution approach via a column-and-row generation framework for

the robust aircraft routing model (RAR) introduced in Section 2.1. We also discuss our computa-

tional approaches for solving the separation problem and the pricing problem, respectively.

3.1. Column-and-Row Generation Framework

As in the deterministic aircraft routing problem (2)-(4), RAR contains a huge number of potential

decision variables (aircraft routes). Because it is impractical to enumerate all feasible routes explic-

itly, branch-and-price (Barnhart et al. 1998b) is often used to solve such problems. Unfortunately,

this means that the traditional dualization approach for obtaining the robust counterpart (RC)

introduced by Ben-Tal and Nemirovski (1999) cannot be applied in this setting, because we do not

have the full set of decision variables included in the model before starting the solution process.

However, we can still apply an iterative cutting-plane method (Bertsimas et al. 2014) to repeatedly

solve RAR with a finite subset of the constraints. At each iteration, we check whether any violated

constraints can be generated, adding them if they exist, and re-solving until there are no more

violated constraints. In order to use the cutting-plane method, we consider the equivalent epigraph

reformulation (epi-RAR) for the robust aircraft routing model (RAR),

(epi-RAR) min
x,z

z

s.t.
∑
r∈R

∑
i∈F (r)

pri (d)xr ≤ z, ∀d∈ U (10)

Ax = e (11)∑
r∈R

xr ≤N (12)

x∈ {0,1}|R|
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Note that epi-RAR is a mixed integer linear program with an infinite number of rows (constraint

(10)) and a huge number of columns. To address this, we utilize efficient decomposition methods

on both rows and columns. We refer to constraints (10) as robustifying constraints because they

help to protect against all possible flight primary delays in the uncertainty set.

3.1.1. The Separation Problem

For the relaxed problem epi-RAR with only a subset of robustifying constraints (10), we let x∗

denote the optimal solution, and we let z∗ denote the optimal objective value. We denote by Rx∗

the feasible aircraft routes that are specified by x∗ (i.e., Rx∗ = {r ∈R | x∗r = 1}). The following

separation problem (SEP) checks whether any violated constraints in (10) must be added into the

model:

(SEP) z(Rx∗) = max
p,d

∑
r∈Rx∗

∑
i∈F (r)

pri (13)

s.t. prj = max{0, pri + di− slacki,j}, ∀r ∈Rx∗ , ∀(i, j)∈ r (14)

d∈ U

Given a specific aircraft routing, SEP optimizes the flight leg primary delays d∈ U to maximize

the total propagated delay stated in objective (13). We note here that SEP cannot be solved

in parallel, since primary delays for flights from different routes could be jointly constrained in

uncertainty set U .

Constraint (14) is nonlinear in nature, but we can linearize it through a big-M re-formulation as

follows, denoted as SEP-bigM :

(SEP-bigM) z(Rx∗) = max
p,d

∑
r∈Rx∗

∑
i∈F (r)

pri (15)

s.t. prj ≤ pri + di− slacki,j +M 1
j Ij, ∀r ∈Rx∗ , ∀(i, j)∈ r (16)

prj ≤ 0 +M 2
j (1− Ij), ∀r ∈Rx∗ , ∀(i, j)∈ r (17)

d∈ U

I ∈ {0,1}|F|

where M 1
j ,M

2
j are sufficiently large constants (big-Ms), and I are auxiliary indicator variables that

are explained in more detail below.

Since U is a polyhedral set in our case, SEP-bigM is a mixed integer linear program. Along with

the objective, constraints (16) and (17) together restrict that prj = max{0, pri +di− slacki,j}, (i, j)∈

r, which is the definition of propagated delay. To see this, if auxiliary variable Ij = 1, constraints (16)

become ineffective, and constraints (17) indicate prj = 0 due to the maximization of the objective
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function; similarly, if Ij = 0, constraints (16) ensure prj = pri + di − slacki,j. Thus at the optimal

solution, Ij will automatically pick the right value to ensure prj = max{0, pri + di − slacki,j}. We

solve SEP-bigM with route Rx∗ and denote the optimal flight leg primary delay allocation by d∗.

If z(Rx∗) ≤ z∗, then no violated constraint need be added; if z(Rx∗) > z∗, we add the violated

constraint
∑

r∈R
∑

i∈F (r) p
r
i (d
∗)xr ≤ z to the relaxed master problem and re-solve.

Solving SEP-bigM is not an easy task due to the combinatorial structure of mixed integer

programs. However, tightening the big-M constants for each constraint can make the formulation

substantially stronger than if big-Ms are assigned arbitrarily large values. We present a method

below to determine tightened but sufficiently large big-Ms.

Proposition 1. Let d∗j = maxd∈U dj,∀j ∈ {1, · · · , |F|}, and prj(d
∗),∀j ∈ {1, · · · , |F|} be the cor-

responding propagated delays under flight leg delays d∗ = {d∗1, · · · , d∗|F|}. Then M 1
j = slacki,j, M

2
j =

prj(d
∗) are valid values of big-Ms for SEP-bigM.

Proof. In the optimal solution, indicator variable Ij is 1 if pri + di − slacki,j ≤ 0, which makes

prj = max{0, pri + di − slacki,j}= 0. Since constraint (17) becomes prj ≤ 0 under Ij = 1, in order to

let prj = 0 in the optimal solution, the right hand side of constraint (16) should be greater than or

equal to 0, i.e. pri + di − slacki,j +M 1
j ≥ 0. Since pri , di ≥ 0, setting M 1

j = slacki,j is valid. On the

other hand, in the optimal solution, Ij is 0 if pri + di− slacki,j ≥ 0, thus ensuring prj = max{0, pri +

di− slacki,j}= pri + di− slacki,j. Since constraint (16) becomes prj ≤ pri + di− slacki,j under Ij = 0,

to make prj = pri +di− slacki,j in the optimal solution, the right hand side of constraint (17) should

satisfy M 2
j ≥ pri + di − slacki,j. Note that by construction, di ≤ d∗i ,∀i ∈ {1, · · · , |F|},∀d ∈ U , thus

pri + di − slacki,j ≤max{0, pri + di − slacki,j}= prj(d)≤ prj(d∗),∀r ∈Rx∗ ,∀(i, j) ∈ r because prj(d) is

a monotonically increasing function. This result shows that M 2
j = prj(d

∗) is valid. �

Computing tightened big-M according to Proposition 1 requires solving |F| separate optimiza-

tion problems. The complexity of these optimization problems depends on how we construct uncer-

tainty set U . Under the set (9) we use, these optimization problems become linear programs, which

can be solved very efficiently. With tightened big-M , this formulation works fairly efficiently when

we test it for moderately large industry size instances in Section 4. When using it to solve very

large instances, careful construction of uncertainty set U can greatly speed up SEP-bigM. For

instance, for the uncertainty set described in (8), we could group flights according to their des-

tination airport or pathway and estimate the covariance matrix for each group individually by

assuming that primary delays between two flights in two different groups are independent. In that

case, C = Σ̂−
1
2 becomes sparse, making SEP-bigM easy to solve. Along the same lines, directly

estimating a sparse inverse covariance matrix from data is also useful in increasing tractability for

large instances (Friedman et al. 2008, Hsieh et al. 2011).
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3.1.2. The Pricing Problem

Each time a new robustifying constraint is added to the relaxed master problem, the resulting

program needs to be solved using column generation. Let G= (N ,A) be a directed acyclic graph

with a single source node s and a single terminal node t. The node set N represents the set

of flights and arc set A corresponds to feasible connections between flights. For simplicity and

testing purposes, the source node and terminal node are dummy nodes that link to all flight

nodes. In practice, various operational restrictions could be added (Barnhart et al. 1998a). For

example, the source node and terminal node can only be linked to flights departing from and

arriving to maintenance-compatible airports, respectively. Each flight node i possesses a weight

−µi corresponding to the negative dual price of the ith flight covering constraint (11). We denote

by r the dual price of the fleet count constraint (12). Without loss of generality, suppose there are

k constraints in the robustifying constraint set (10). Let d1,d2, · · · ,dk be the corresponding flight

primary delays vectors and s1, s2, · · · , sk be the dual prices for robustifying constraints 1 to k. Thus

for the RAR pricing problem, we wish to find an s− t path π∗ = {s,n1, n2, · · · , t} that minimizes

reduced cost

π∗ = arg min
π is an s− t path

rcπ =

{(
−r−

∑
i∈π:i 6=s,t

µi

)
−

k∑
j=1

( ∑
i∈π:i 6=s,t

sjp
π
i (dj)

)}
. (18)

If reduced cost rcπ∗ < 0, the minimizing route π∗ forms a new column of A and is assigned a cost

of
∑

i∈π∗:i 6=s,t p
π∗
i (dj) for robustifying constraints j = 1,2, · · · , k.

3.1.3. Solving the Pricing Problem

We discuss here in detail the revised label setting algorithm to solve (18), which dynamically

calculates the propagated delays using (1) and the reduced cost of the path. As Dunbar et al.

(2012) point out, because the propagated delay pπi (·) is not a simple sum of delays along the path

from s to i, problem (18) cannot easily be cast as a minimum cost network flow problem. The label

setting algorithm we develop here is modified from Dunbar et al. (2012).

Let π be an s − t path in G (an ordered collection of nodes {s,n1, · · · , nq, t} in N with

(s,n1), (nq, t)∈A and (nl, nl+1)∈A for all l= 1, · · · , q− 1). For n∈ π, let π(n) denote the ordered

collection of nodes in the path π truncated so that the final node in the list is n. Define truncated

reduced cost rcπ(n) =
(
−r−

∑
i∈π(n):i6=s,t µi

)
−
∑k

j=1

(∑
i∈π(n):i 6=s,t sjp

π(n)
i (dj)

)
. Denote by pπn(·) the

propagated delay at node n, computed along path π(n) using (1). Due to the nonlinear nature of

the propagated delay formula (1), our labels must track both the accumulated reduced cost rcπ(n)

at node n along path π and the propagated delay pπn(·). This motivates the following dominance

conditions for paths destined for the same node.
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Definition 1 (Path Dominance Condition). Let paths π(n), η(n) be two different paths

destined for the same node n. We say that π(n) dominates η(n) if rcπ(n) ≤ rcη(n), p
π(n)
n (dj) ≤

pη(n)
n (dj),∀j ∈ {1, · · · , k} and (rcπ(n), p

π(n)
n (dj)) 6= (rcη(n), p

η(n)
n (dj)) such that sj < 0, where k is the

number of robustifying constraints (10) at the current iteration.

Lemma 1. Let m∈N such that (n,m)∈A. If π(n) dominates η(n), then {π(n),m} dominates

{η(n),m}.

Proof. From (1) we have ∀j ∈ {1, · · · , k} such that sj < 0,

p{π(n),m}
m (dj) = max{0, p{π(n),m}

n (dj) + djn− sn,m}, (19)

p{η(n),m}
m (dj) = max{0, p{η(n),m}

n (dj) + djn− sn,m}. (20)

By Definition 1, (19) and (20),

p{π(n),m}
n (dj) = pπ(n)

n (dj)≤ pη(n)
n (dj) = p{η(n),m}

n (dj)

Thus we have,

p{π(n),m}
m (dj)≤ p{η(n),m}

m (dj), ∀1≤ j ≤ k, sj < 0 (21)

For the reduced cost, linear programming duality tells us that dual prices sj ≤ 0, ∀1≤ j ≤ k for

all robustifying constraints (10), so we have:

rc{π(n),m} = rc{π(n)}−µm−
k∑
j=1

sjp
{π(n),m}
m (dj) = rc{π(n)}−µm−

∑
1≤j≤k:sj<0

sjp
{π(n),m}
m (dj), (22)

rc{η(n),m} = rc{η(n)}−µm−
k∑
j=1

sjp
{η(n),m}
m (dj) = rc{η(n)}−µm−

∑
1≤j≤k:sj<0

sjp
{η(n),m}
m (dj). (23)

Since rc{π(n)} ≤ rc{η(n)} and (21), we have rc{π(n),m} ≤ rc{η(n),m}. �

By induction, Lemma 1 suggests that if $ is a path from m to terminal node t, and (n,m)∈A, we

have rc{π(n),$} ≤ rc{η(n),$}. Thus equipped with this definition of path dominance, we can directly

apply the label setting algorithm of Dunbar et al. (2012) (Algorithm 1) to solve (18) where at each

node, we only create labels for those paths that are not dominated by any other paths at that

node.

This label setting algorithm is fairly efficient on the instances we test in Section 4. One major

reason for this is that some of the robustifying constraints (10) are not binding in the optimal

solution of the relaxed master problem. Thus, some of the dual prices corresponding to those

robustifying constraints are zero. This makes the pricing algorithm, or more precisely the dominance

condition, easier than it appears to be.
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Algorithm 1 (Dunbar et al. 2012) Label Setting Algorithm for Pricing New Columns

Initialize:

Set Is = {s} and Ii = ∅ for all i∈N\{s}.
Set Mi = ∅ for each i∈N .

loop

if
⋃
i∈N (Ii\Mi) = ∅ then

return arg minπ(t)∈It rcπ(t)

else

choose i∈N and π(i)∈ Ii\Mi so that rcπ(i) is minimal

for (i, j)∈A do

if path {π(i), j} is not dominated by η(j) for any η(j)∈ Ij then

set Ij = Ij
⋃
{π(i), j}

end if

end for

set Mi =Mi

⋃
{π(i)}

end if

end loop

3.2. Overall Algorithm

We summarize the column-and-row generation algorithm that we use to solve epi-RAR in Algo-

rithm 2. The algorithm iteratively adds robustifying constraints and new columns by solving the

corresponding separation and pricing sub-problems until the upper bound provided by the separa-

tion problem matches with the optimal value of the current relaxed epi-RAR problem.

4. Computational Experiments

In this section, we compare the performance of our robust model against that of the state-of-the-

research approach (Dunbar et al. 2014) on both historical delay data and simulated delay data.

All computer programs were written in Java, and linear and integer programs were solved by IBM

ILOG CPLEX 12.6 with default settings. We note here that the solution approach (Algorithm 2)

for RAR requires branch-and-price at each iteration. Due to implementation difficulties, we only

solve relaxed epi-RAR at the root node by column generation and do not perform any further

branching. However, we observed that the optimal value of the LP relaxation for relaxed epi-RAR

coincides with that of the IP solution in many cases. All computational tests were performed on a

laptop equipped with an Intel Core i7-3520M CPU running at 2.90 GHz and 8 GB memory.
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Algorithm 2 Simultaneous Column-and-Row Generation

Given:

Relaxed epi-RAR with only constraints (11) and (12)

Initialize:

Add first robustifying constraint
∑

r∈R
∑

i∈F (r) p
r
i (d

0)xr ≤ z with an arbitrary d0 ∈ U .

loop

Solve relaxed epi-RAR using branch-and-price, get optimal routes Rx∗ and optimal value z∗.

Given Rx∗ , solve SEP-bigM, get optimal flight primary delays d∗ and optimal value z(Rx∗).

if z(Rx∗)> z∗ then

Add robustifying constraint
∑

r∈R
∑

i∈F (r) p
r
i (d
∗)xr ≤ z to relaxed epi-RAR.

else

return Rx∗

end if

end loop

4.1. Benchmark Model, Local Approach in Dunbar et al. (2014)

Based on the models and algorithms developed in Dunbar et al. (2012), Dunbar et al. (2014) fur-

ther incorporate stochastic delay information to minimize expected total propagated delay. They

model delay stochasticity by constructing a set of random scenarios Ω, where each scenario ω ∈Ω

corresponds to primary delay values dω for each flight. Each random scenario is realized with equal

probability. They develop two algorithms to tackle this problem: 1) the exact approach and 2)

the local approach. Since their approaches were originally designed for integrated aircraft routing

and crew scheduling, we simplify here to only aircraft routing. The exact approach enumerates all

the feasible aircraft routes R. For each feasible routing r ∈ R, they calculate its expected total

propagated delay Ed [cr(d)] =
∑

ω∈Ω
1
|Ω|

(∑
i∈F (r) p

r
i (d

ω)
)

. They then directly solve the determinis-

tic model in (2)-(4) with all decision variables generated. They change the objective function to be∑
r∈REd [cr(d)]xr, which represents the sum of expected total propogated delay over all selected

routings. Although this is an exact solution approach, it is not practical for industry-sized problems

due to its lack of an efficient column generation process. As a result, we consider the local approach

as our benchmark for comparison. The local approach is an approximation approach that incor-

porates stochastic delay information from the scenarios within the label-setting algorithm used in

the pricing problem. At each step of the label-setting algorithm, it calculates the average delay

propagation arriving at each flight node over all scenarios ω ∈ Ω. We denote p̂rj as the average

propagated delay at node j along path r, and p̂rj = 1
|Ω|

∑
ω∈Ω max

{
0, p̂rj + dωi − slacki,j

}
. With this

notation, we introduce the path dominance condition used in the local approach in Dunbar et al.

(2014).
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Definition 2 (Path Dominance Condition in Dunbar et al. (2014)). Let π(n), η(n) be

two different paths destined for the same node n. We say that π(n) dominates η(n) if rcπ(n) ≤ rcη(n)

and p̂π(n)
n ≤ p̂η(n)

n .

The optimal solution of the local approach can be computed by column generation using the

pricing algorithm (Algorithm 1) with path dominance condition as Definition 2.

4.2. Case Studies Based on Historical Delay Data

To evaluate the effectiveness of our robust model, we apply Algorithm 2 to create routes for two of

the largest fleet types operated by a major US airline in the year 2007. The characteristics of the

underlying networks are listed in Table 1, and all the flights selected are operated on a daily basis

over the testing period. Because in practice the model will be built using historical data and then

applied to future operations, all routings were created using ASQP data containing historical flight

primary delays for the 31 days of July 2007 (the training set) and then evaluated out-of-sample on

the 31 days of August 2007 (the testing set).

Table 1 Characteristics of Two Routing Problems

Network Number of flight legs Number of aircraft
N1 106 24
N2 117 23

For both sets of data, we benchmark the routes of our robust model against two other routes:

1. The original route in the historical schedule data as the baseline (B):

This is the airline’s actual route for the selected flights.

2. The local approach provided in Dunbar et al. (2014) (DFW) as in Section 4.1:

The flight primary delays for the 31 days in July 2007 constitute 31 random delay scenarios.

Each random scenario is realized with probability 1
31

.

We evaluate the performance of these three approaches along three criteria: 1) the average total

propagated delay, 2) the volatility of total propagated delay (standard deviation), and 3) worst-

case total propagated delay (maximum value). Figures 1 and 2 compare the performance of the

robust approach over a range of values of the budget of uncertainty Γ∈ {0.2,0.4, · · · ,2.8,3.0} to the

DFW method on the training data from July 2007. We compute the ratios: 100 · (B−DFW)/B and

100 · (B−RAR)/B in each performance evaluation criterion to measure the improvement over the

baseline (B). The long dashed lines represent the relative reduction in percentage in corresponding

performance criterion for approach DFW over the baseline case (B), and the solid lines represent

the relative reduction in percentage in corresponding performance criterion for approach RAR over

the baseline (B) under various values of uncertainty budget Γ. Notice that for the robust approach,
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as Γ increases, the performance along the measures of standard deviation and maximum value

of propagated delay improves almost monotonically. This is because the routings are created on

training data, and larger values of Γ protect against precisely the maximum total propagated delay.

Figure 1 Relative Improvements of the Algorithms RAR over B and DFW over B on Network N1 (July 2007)
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Figure 2 Relative Improvements of the Algorithms RAR over B and DFW over B on Network N2 (July 2007)
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When the optimal routes informed by the robust model formulated using the training data

(July 2007) are applied to testing data (August 2007) as in Figures 3 and 4, we no longer see

this monotonicity trend. In practice, we would select one particular value of Γ to create future

routings. Guidelines for selecting the budget of uncertainty in previous literature (Bertsimas et al.

2011, 2013a) usually focus on probabilistic guarantees, i.e. the uncertainty set can be tuned so

that constraints are robustly feasible with at least some probability. However, uncertainty of pri-

mary delays in our problem does not affect route feasibility, it only changes the amount of total
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propagated delay. Thus, we decide to choose Γ based on the performance of propagated delay on

the training set. We prioritize average total propagated delay as our main performance goal, thus

based on Figures 1 and 2, we consider Γ = 2.4 to be appropriate for network N1 and Γ = 1.4 to be

appropriate for network N2 because the robust model yields the lowest average total propagated

delay under these two Γ in the training set. Table 2 presents summary statistics for all propagated

delay performance criteria under the testing set for routes produced by each approach under both

networks N1 and N2. Rows with values of Γ that are selected based on training set performance

are in boldface. Note that generally, the best way to set the parameter Γ would be: (1) divide our

historical dataset into training and validation components; (2) select the value of Γ that yields the

best performance on the validation set (cross-validation can also be applied); and (3) once that

value of Γ is set, we would then use it to generate future aircraft routings. For the sake of simplicity

and also due to a dearth of data, we only use training set to select the value of Γ in this paper.

Figure 3 Relative Improvements of the Algorithms RAR over B and DFW over B on Network N1 (August 2007)
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Figure 4 Relative Improvements of the Algorithms RAR over B and DFW over B on Network N2 (August 2007)
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Both approaches improve upon the baseline routing considerably in terms of average, standard

deviation, and maximum of total propagated delay. For testing data on network N1, when Γ = 2.4,

RAR performs better than DFW in all of the performance criteria of total propagated delay that we

consider (1.0% larger decrease in average total propagated delay, 6.2% larger decrease in standard

deviation, and 1.8% larger decrease in maximum total propagated delay, as compared to baseline).

For testing data on network N2, when Γ = 1.4, RAR outperforms DFW according to the standard

deviation (2.8% larger decrease from baseline) and maximum value of total propagated delay (4.6%

larger decrease from baseline), but loses slightly in terms of average total propagated delay (0.8%

smaller decrease from baseline).

Aside from the Γ we choose, for both flight networks under testing data, RAR actually out-

performs DFW in reducing volatility and extreme delay under a wide range of Γ values [0.6,2.4]

(especially in network N2, RAR outperforms DFW in reducing extreme delay value under all Γ

values). For very small (≤ 0.4) and very large (≥ 2.6) Γ values, RAR loses superiority in at least

two evaluation criteria. This is because the uncertainty set U constructed by these Γ are either

too conservative (for large Γ values) or too restrictive (for small Γ values) in representing potential

primary delay. In other words, such Γ values do not accurately capture real world data. When

Γ ∈ [0.6,2.4], in network N1, compared to DFW, RAR can reduce on average 8.7% more of the

standard deviation and on average 6.6% more of the maximum delay value from the baseline. For

network N2, RAR can reduce on average 2.6% more of the standard deviation and on average

4.9% more of the maximum delay value compared to DFW from the baseline. The superiority in

reducing extreme delay values of RAR intuitively makes sense because of the min-max objective in

RAR formulation. The reduction in volatility is a surprising by-product of reduced extreme delay

values, even though we do not explicitly include it in the objective for RAR. Most surprisingly,

for network N1, RAR also has better performance in reducing average total propagated delay in

the training set. When Γ ∈ [0.6,2.4], on average 4.3% more of the average total propagated delay

can be reduced. In network N2, RAR underperforms DFW in reducing average delay value, but

not by too much (on average only 0.8% when Γ ∈ [0.6,2.4]), especially in light of the gains made

in reducing volatile and extreme values.

As for computational tractability, the efficiency of the RAR model depends heavily on the

tractability of the separation problem. When the separation problem is easy to solve (e.g., as in

network N2), the RAR model is more efficiently solved for all values of Γ when compared to DFW.

However, when the separation problem is relatively hard to solve (e.g., for network N1 and larger Γ

values), RAR is less efficient to solve. Overall, for both models, two moderately-large industry size

instances can be solved to optimal in 20 minutes. Further computational time reduction for RAR

could be achieved by performing matrix sparsifying tricks suggested in Section 3.1.1. We also point
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Table 2 Comparative Algorithmic Performance on Two Test Networks

Approach
AVG. Total

Propagated Delay
(minute)

STD. Total
Propagated Delay

(minute)

MAX Total
Propagated Delay

(minute)

Total
CPU Time
(second)

SEP-bigM
CPU Time
(second)

Number of
Robustifying
Cuts Added

Flight Network N1, 106 flights / 24 aircraft
B 1,042.6 1,409.8 5,856 – – –
DFW 575.7 901.8 3,245 108.35 – –
RAR (Γ = 0.2) 696.8 1,083.9 4,402 11.56 5.22 3
RAR (Γ = 0.4) 688.5 1,023.7 3,874 41.86 34.92 4
RAR (Γ = 0.6) 537.7 795.3 2,654 55.72 46.79 4
RAR (Γ = 0.8) 538.1 837.1 2,932 91.37 81.72 4
RAR (Γ = 1.0) 495.1 749.3 2,845 51.83 40.34 4
RAR (Γ = 1.2) 521.2 804.5 3,184 168.11 145.00 8
RAR (Γ = 1.4) 534.4 804.7 3,126 229.39 200.75 6
RAR (Γ = 1.6) 502.0 707.6 2,535 574.65 543.75 6
RAR (Γ = 1.8) 526.5 745.1 2,472 895.88 851.19 6
RAR (Γ = 2.0) 536.9 756.2 2,776 810.67 764.12 7
RAR (Γ = 2.2) 551.7 773.5 2,904 784.55 722.94 7
RAR (Γ = 2.4) 565.3 813.9 3,139 857.48 781.74 7
RAR (Γ = 2.6) 638.9 895.8 3,426 752.75 672.25 4
RAR (Γ = 2.8) 593.4 825.5 3,110 966.78 869.10 9
RAR (Γ = 3.0) 690.0 908.2 3,240 367.71 299.19 5

Flight Network N2, 117 flights / 23 aircraft
B 1,131.9 1,651.4 7,392 – – –
DFW 854.0 1,256.7 5,837 55.54 – –
RAR (Γ = 0.2) 876.9 1,243.6 5,572 17.24 3.80 2
RAR (Γ = 0.4) 864.0 1,258.4 5,680 18.08 6.83 2
RAR (Γ = 0.6) 863.9 1,211.1 5,417 25.36 7.44 3
RAR (Γ = 0.8) 869.7 1,207.9 5,305 18.82 7.10 2
RAR (Γ = 1.0) 856.7 1,203.4 5,370 48.43 18.85 4
RAR (Γ = 1.2) 869.9 1,232.0 5,552 27.32 9.61 2
RAR (Γ = 1.4) 863.2 1,211.0 5,500 44.56 12.99 4
RAR (Γ = 1.6) 869.0 1,219.3 5,526 51.30 14.42 4
RAR (Γ = 1.8) 859.5 1,222.9 5,562 45.75 11.09 3
RAR (Γ = 2.0) 859.5 1,219.9 5,533 40.58 13.19 4
RAR (Γ = 2.2) 864.8 1,206.5 5,477 32.65 9.08 3
RAR (Γ = 2.4) 858.1 1,209.1 5,504 48.56 16.05 4
RAR (Γ = 2.6) 872.4 1,239.4 5,737 46.29 13.17 3
RAR (Γ = 2.8) 879.2 1,228.4 5,682 38.22 5.38 2
RAR (Γ = 3.0) 883.0 1,239.6 5,737 33.52 5.85 2

out here that the solution time of RAR does not depend on the size of the historical delay data for

training. No matter how many days of historical flight delay we use, we can transform all of them

into a single uncertainty set of the same size. On the other hand, the solution time of DFW grows

approximately linearly with the number of days involved in the training set because the algorithm

needs to average over all training days for each flight leg during the column generation process.

This suggests RAR might require less computational effort when we want to use more historical

delay data to train our model.

In this case study, careful modeling of the uncertainty set U allows us to reduce the volatility of

solution performance. In some cases, average performance also benefits when compared to existing

state-of-the-research stochastic optimization approach. We suspect that these benefits come from
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the following: (1) the robust approach provides additional robustness when the realized primary

delays are slightly different from the estimated distribution in the training data set; and (2) the

robust model provides a tractable and exact approach to deal with correlated primary delays, and

incorporating delay correlation improves the robustness of resultant routings.

4.3. Case Studies Based on Simulated Delay Data

To provide more insight into the relative performance of RAR over DFW, we conduct an addi-

tional round of computational experiments where the flight primary delay data are generated from

simulated probability distributions instead of historical data. We seek to quantify the robustness

of both methods with respect to changes in probability distributions. These case studies are moti-

vated by the idea that primary flight leg delay rarely corresponds to a specific distribution, but

rather a composite of several types of delays, each with differing individual distributions that may

vary throughout different times of the day, month, and year (Tu et al. 2008). Because of this distri-

bution ambiguity and variation over time, it is an important feature of robust operations planning

methods to be able to protect against ambiguity of future delays when trained on historical data.

Previous literature suggests several classes of candidate probability distributions that are com-

monly used to model flight leg delay (Mueller and Chatterji 2002, Tu et al. 2008, Bai 2006). Out of

these, we pick three representative ones: normal (truncated), gamma, and log-normal. The compu-

tational experiment is set up as follows. For the training data set, we use historical flight delay data

in July 2007 (the training set we use in Section 4.2) to compute the observed mean and variance

of each flight leg and the Spearman’s rank correlation coefficient matrix of all flight legs. We pick

Spearman’s rho instead of the widely-used Pearson’s rho because Spearman’s rho preserves order

when nonlinear transformations are applied to random variables. This is convenient for generat-

ing random variables with different distributions, but the same correlation structure (MathWorks

2014). We then generate the set of training data with 1,000 samples for each flight leg such that

the marginal distributions of flight legs follow a truncated normal distribution with the same mean

and variance calculated from the July 2007 data. We also fix the Spearman’s rank correlation coef-

ficient matrix of the simulated data to be the same as the one calculated from July 2007 data. For

testing data sets, we create three different groups of testing sets where the marginal distributions

of flight leg delay are distributed as truncated normal, gamma, and log-normal respectively. For

each group, we create testing sets in the following way:

• Deviation in mean

We keep the standard deviation and Spearman’s rank correlation coefficient matrix of the testing

set the same as the training set. We then generate testing data by setting the mean to be 0.5, 0.75,

1, 1.25, 1.5, 1.75, 2 times the mean of the training set.
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• Deviation in standard deviation

We keep the mean and Spearman’s rank correlation coefficient matrix of the testing set the same

as the training set. We then generate testing data by setting the standard deviation of the testing

set to be 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 times the standard deviation of the training set.

• Deviation in correlation structure

We keep the mean and standard deviation of the testing set the same as the training set. We

then generate testing data with different Spearman’s rank correlation coefficient matrix. We define

the multiplier of correlation α ∈ (−∞,1] as a parameter to control how the correlation structure

deviates from the training set. α = 0 means there is no change in correlation structure. As α

increases to 1, the primary delays become more independent, with full independence at α = 1.

As α decreases to −∞, the primary delay data becomes more correlated, with perfect correlation

at α=−∞ (positive or negative correlations are preserved from the training data). We pick α=

ln(3/4), ln(5/6), ln(11/12),0, ln(1+(e−1)/12), ln(1+(e−1)/6), ln(1+(e−1)/4) to generate testing

data with various correlation structures. The detailed meaning of α and the correlation perturbing

procedures are provided in Appendix B.

In total, we have 19 testing sets for each distribution and each flight network. We apply the

above generation procedure to both networks N1 and N2 that we used in Section 4.2. We use the

training set to create routings using both RAR and DFW and then test the performance of the

generated routings under the testing sets created using the procedure above. Note that in DFW,

there are 1000 random scenarios and each realizing with probability 1
1000

. Similar to Section 4.2, for

both networks, we select uncertainty budget Γ which has the best performance in reducing average

total propagated delay in the training set. For network N1, Γ = 2.0; for network N2, Γ = 1.0. Since

we do not have a baseline routing anymore, we calculate the relative performance ratio of RAR

over DFW as 100 · (DFW−RAR)/DFW for each performance criteria. The results are summarized

in Tables 3, 4 and 5, where each table corresponds to a specific testing data delay distribution.

Complete results with all values of Γ ∈ {0.2,0.4, · · · ,2.8,3.0} are presented in Figures 5 - 22 in

Appendix A.

Overall, in all 114 testing sets, RAR outperforms DFW in reducing average value in 84% (96/114)

of the cases, reducing standard deviation in 99% (113/114) of the cases, and reducing extreme

value in 97% (111/114) of the cases.

When testing data is distributed in the same way as the training data (truncated normal, Table

3), for both networks, RAR consistently outperforms DFW in reducing standard deviation and

extreme value, especially when testing data has a larger mean or standard deviation than the

training set. The only exception is the case when standard deviation multiplier is 0.5 in network N1.

On the other hand, in many cases, DFW outperforms RAR in reducing average propagated delay,
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especially when the testing data has a smaller mean or variance compared to the training data

and when the tesing data has a different correlation structure. Overall, similar to what we observe

in the computational results of network N2 in Section 4.2, the improvement in reducing volatility

and extreme value comes at the cost of a diminished performance with regard to decreasing the

average value. However, this cost is small in comparison to the reductions in volatility and extreme

value that we observe.

When the testing set is distributed as gamma or log-normal (i.e., different from the training set,

Tables 4 and 5), in most of the cases when only mean and standard deviation are varying, RAR

consistently results in a route which has substantially smaller standard deviation, extreme value

and even average value. Exception occurs only when the standard deviation of the testing set is

50% that of the training set in network N1. But again, the increase in average total propagated

delay is relatively small. When correlation structure deviates in the testing data, we see that the

impact of such deviation on RAR’s performance is much larger than the impact of deviation in

mean or standard deviation. Under almost all correlation multipliers, all three performance criteria

(especially for the extreme value reduction criterion) are inferior to the cases when correlation

structure is invariable. Deviation in correlation changes the shape of the uncertainty set, which

might cause this substantial downgrade in RAR’s performance. Though RAR is less effective in

these correlation-varying cases, it still outperforms DFW in at least two criteria. Moreover, the

small inferiority in one criterion, if exists, is usually offset by the superiority of the other two

criteria.

In a word, compared to the existing stochastic optimization approach, the RAR model provides

additional benefit when realized flight leg delay distributionally differs from historical data.

5. Concluding Remarks and Future Research Directions

In this paper, we propose a robust optimization-based formulation for the aircraft routing problem

to minimize the maximal possible total propagated delay, assuming flight primary leg delays live

in a pre-specified uncertainty set. We provide data-driven methods to construct a flight leg delay

uncertainty set that not only includes the uncertainty of individual flights, but also the correla-

tions among different flights. We then reformulate the robust problem as an integer program. We

propose an exact decomposition solution approach under a column-and-row generation framework.

Importantly, this solution method can be applied to general robust optimization problems where

the nominal problem is solved through branch-and-price.

Using real-world instances with actual schedule and delay data, along with simulated delay data,

we demonstrate the effectiveness and efficiency of our method. We show that by incorporating

delay correlation, our robust model outperforms the state-of-the-research stochastic optimization
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Table 3 Relative Performance Ratio (RPR) under Different Mean / Standard Deviation / Correlation

Multiplier of Testing Data Following Truncated Normal Distribution

Multiplier of
mean

Multiplier of
std

Multiplier of
correlation

RPR of mean
reduction (%)

RPR of std
reduction (%)

RPR of extreme value
reduction (%)

Flight Network N1, 106 flights and 24 aircraft, best Γ = 2.0
0.50 1.00 0.00 -1.0 6.5 10.0
0.75 1.00 0.00 -0.4 6.9 9.0
1.00 1.00 0.00 0.2 7.3 8.9
1.25 1.00 0.00 0.8 7.7 8.9
1.50 1.00 0.00 1.4 8.1 9.5
1.75 1.00 0.00 1.9 8.4 9.5
2.00 1.00 0.00 2.5 8.7 9.4
1.00 0.50 0.00 -12.4 -0.7 6.7
1.00 0.75 0.00 -4.1 5.5 11.8
1.00 1.25 0.00 2.1 7.4 8.8
1.00 1.50 0.00 3.1 7.2 6.9
1.00 1.75 0.00 3.6 7.0 6.0
1.00 2.00 0.00 3.9 6.9 5.3
1.00 1.00 ln(3/4) 0.2 8.4 10.3
1.00 1.00 ln(5/6) 0.6 8.0 10.2
1.00 1.00 ln(11/12) -0.1 6.2 4.4
1.00 1.00 ln(1 + (e− 1)/12) -0.8 6.4 11.0
1.00 1.00 ln(1 + (e− 1)/6) -0.6 5.9 1.5
1.00 1.00 ln(1 + (e− 1)/4) -0.7 6.8 9.5

Flight Network N2, 117 flights and 23 aircraft, best Γ = 1.0
0.50 1.00 0.00 0.3 1.5 2.1
0.75 1.00 0.00 0.3 1.6 2.2
1.00 1.00 0.00 0.4 1.7 1.9
1.25 1.00 0.00 0.4 1.9 1.9
1.50 1.00 0.00 0.5 2.0 1.7
1.75 1.00 0.00 0.5 2.1 1.8
2.00 1.00 0.00 0.6 2.3 1.7
1.00 0.50 0.00 -0.1 1.1 2.9
1.00 0.75 0.00 0.2 1.5 2.1
1.00 1.25 0.00 0.5 1.9 1.6
1.00 1.50 0.00 0.6 2.0 0.9
1.00 1.75 0.00 0.7 2.2 0.4
1.00 2.00 0.00 0.9 2.4 0.6
1.00 1.00 ln(3/4) -0.3 1.1 0.1
1.00 1.00 ln(5/6) -0.4 0.7 2.9
1.00 1.00 ln(11/12) -0.3 1.1 0.6
1.00 1.00 ln(1 + (e− 1)/12) -0.1 0.7 0.9
1.00 1.00 ln(1 + (e− 1)/6) 0.1 1.7 1.1
1.00 1.00 ln(1 + (e− 1)/4) -0.4 0.5 2.4

approach in reducing all three performance criteria considered: average value, standard deviation

and maximum value of total propagated delay in most of the cases. In the cases when deficit in

one criterion exists, such inferiority is usually offset by gains in the other two criteria.

We attribute these benefits to characteristics of our solution method: (1) the robust approach

provides a tractable and exact method for dealing with correlated uncertainty, thus providing

additional robustness against propagated delay; and (2) the robust approach is less vulnerable
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Table 4 Relative Performance Ratio (RPR) under Different Mean / Standard Deviation / Correlation

Multiplier of Testing Data Following Gamma Distribution

Multiplier of
mean

Multiplier of
std

Multiplier of
correlation

RPR of mean
reduction (%)

RPR of std
reduction (%)

RPR of extreme value
reduction (%)

Flight Network N1, 106 flights and 24 aircraft, best Γ = 2.0
0.50 1.00 0.00 4.6 9.5 17.3
0.75 1.00 0.00 3.6 8.3 14.5
1.00 1.00 0.00 3.0 7.7 12.4
1.25 1.00 0.00 2.6 7.5 11.2
1.50 1.00 0.00 2.5 7.5 10.3
1.75 1.00 0.00 2.5 7.5 9.5
2.00 1.00 0.00 2.6 7.6 8.6
1.00 0.50 0.00 -5.4 6.5 11.1
1.00 0.75 0.00 0.8 7.7 12.2
1.00 1.25 0.00 3.9 7.8 13.3
1.00 1.50 0.00 4.6 8.1 14.3
1.00 1.75 0.00 5.0 8.5 15.4
1.00 2.00 0.00 5.4 8.8 16.4
1.00 1.00 ln(3/4) 2.9 7.9 10.6
1.00 1.00 ln(5/6) 3.2 7.6 11.2
1.00 1.00 ln(11/12) 1.0 3.6 5.8
1.00 1.00 ln(1 + (e− 1)/12) 1.8 6.9 7.0
1.00 1.00 ln(1 + (e− 1)/6) 2.1 5.2 -2.5
1.00 1.00 ln(1 + (e− 1)/4) 2.9 8.2 8.6

Flight Network N2, 117 flights and 23 aircraft, best Γ = 1.0
0.50 1.00 0.00 3.7 9.4 27.9
0.75 1.00 0.00 2.6 7.1 26.9
1.00 1.00 0.00 2.0 5.7 18.9
1.25 1.00 0.00 1.7 4.9 16.8
1.50 1.00 0.00 1.4 4.4 15.1
1.75 1.00 0.00 1.3 4.1 13.9
2.00 1.00 0.00 1.2 3.9 13.0
1.00 0.50 0.00 0.0 2.1 5.1
1.00 0.75 0.00 1.1 4.2 16.5
1.00 1.25 0.00 2.7 6.9 23.4
1.00 1.50 0.00 3.3 7.8 26.9
1.00 1.75 0.00 3.8 8.6 27.3
1.00 2.00 0.00 4.2 9.3 27.5
1.00 1.00 ln(3/4) 0.8 3.4 2.3
1.00 1.00 ln(5/6) 0.2 2.9 7.8
1.00 1.00 ln(11/12) 1.3 4.2 3.8
1.00 1.00 ln(1 + (e− 1)/12) 0.8 2.7 0.9
1.00 1.00 ln(1 + (e− 1)/6) 0.9 4.0 1.7
1.00 1.00 ln(1 + (e− 1)/4) 0.6 2.3 4.8

to the variations in the input data when compared to stochastic optimization approaches (i.e.,

the robust approach provides additional robustness when the realized flight delays distributionally

differ from historical data).

The idea of applying robust optimization to robust airline planning is fairly new. There are

many possible future research directions in this area. For example, a direct extension of this work

could be to apply robust optimization to the integrated aircraft routing and crew pairing problem.
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Table 5 Relative Performance Ratio (RPR) under Different Mean / Standard Deviation / Correlation

Multiplier of Testing Data Following Log-normal Distribution

Multiplier of
mean

Multiplier of
std

Multiplier of
correlation

RPR of mean
reduction (%)

RPR of std
reduction (%)

RPR of extreme value
reduction (%)

Flight Network N1, 106 flights and 24 aircraft, best Γ = 2.0
0.50 1.00 0.00 4.8 12.5 23.1
0.75 1.00 0.00 3.5 11.3 21.9
1.00 1.00 0.00 2.6 10.5 20.5
1.25 1.00 0.00 2.1 9.9 19.2
1.50 1.00 0.00 1.8 9.3 17.7
1.75 1.00 0.00 1.7 8.9 16.4
2.00 1.00 0.00 1.8 8.7 15.3
1.00 0.50 0.00 -4.8 10.0 18.2
1.00 0.75 0.00 0.4 10.3 19.7
1.00 1.25 0.00 3.7 10.6 21.1
1.00 1.50 0.00 4.4 10.7 21.5
1.00 1.75 0.00 4.9 10.9 21.9
1.00 2.00 0.00 5.3 11.1 22.2
1.00 1.00 ln(3/4) 0.9 6.9 8.7
1.00 1.00 ln(5/6) 2.2 7.9 9.3
1.00 1.00 ln(11/12) -1.1 1.1 3.1
1.00 1.00 ln(1 + (e− 1)/12) 0.3 6.5 4.8
1.00 1.00 ln(1 + (e− 1)/6) 0.0 3.2 -3.2
1.00 1.00 ln(1 + (e− 1)/4) 1.7 7.0 2.9

Flight Network N2, 117 flights and 23 aircraft, best Γ = 1.0
0.50 1.00 0.00 4.1 13.7 28.9
0.75 1.00 0.00 3.2 11.7 28.5
1.00 1.00 0.00 2.5 9.9 28.0
1.25 1.00 0.00 2.1 8.6 27.4
1.50 1.00 0.00 1.8 7.6 26.8
1.75 1.00 0.00 1.6 6.9 26.1
2.00 1.00 0.00 1.5 6.4 25.4
1.00 0.50 0.00 0.7 5.9 25.3
1.00 0.75 0.00 1.7 8.5 27.3
1.00 1.25 0.00 3.0 10.9 28.3
1.00 1.50 0.00 3.5 11.6 28.4
1.00 1.75 0.00 3.9 12.2 28.5
1.00 2.00 0.00 4.2 12.7 28.6
1.00 1.00 ln(3/4) 0.5 3.2 1.6
1.00 1.00 ln(5/6) -0.3 2.4 6.6
1.00 1.00 ln(11/12) 1.2 3.9 3.2
1.00 1.00 ln(1 + (e− 1)/12) 0.7 2.3 1.1
1.00 1.00 ln(1 + (e− 1)/6) 0.7 3.6 -0.3
1.00 1.00 ln(1 + (e− 1)/4) 0.4 2.4 5.4

It may also be interesting to investigate tailored approaches to modeling flight delay uncertainty

sets, so as to achieve greater tractability as well as probabilistic performance guarantees. We

believe that robust optimization, with its merits of tractability and attractive solution quality,

represents a promising direction for dealing with uncertainty in airline scheduling problems.



Yan and Kung: Robust Aircraft Routing 25

Acknowledgments

The authors want to thank Professors Cynthia Barnhart and Dimitris Bertsimas at MIT, Professor Vikrant

Vaze at Dartmouth for their valuable comments and suggestions. The authors also thank the referees for

several suggestions that improved the manuscript. This material is based upon work supported by the

National Science Foundation Graduate Research Fellowship [Grant No. 1122374] (J. Kung). Any opinion,

findings, and conclusions or recommendations expressed in this material are ours and do not necessarily

reflect the views of the National Science Foundation.

Appendix A: Detailed Computational Results in Section 4.3

Figures 5 - 13 depict the performance in flight network N1, and Figures 14 - 22 depict the performance in

flight network N2. Specifically, Figures 5 - 7, 14 - 16 present the relative performance ratio 100 · (DFW−

RAR)/DFW when mean of the testing data under three different distributions deviate from the training data

for two flight networks. Figures 8 - 10, 17 - 19 show the relative performance ratio 100 · (DFW−RAR)/DFW

when standard deviation of the testing data under three different distributions deviate from the training data

for two flight networks. Figures 11 - 13, 20 - 22 show the relative performance ratio 100 ·(DFW−RAR)/DFW

when correlation structure of the testing data under three different distributions deviate from the training

data for two flight networks. Performance is evaluated in three criteria: (1) average total propagated delay,

(2) standard deviation of total propagated delay, (3) maximum total propagated delay. The long dashed line

indicates 0% relative performance ratio, which marks the place indicating that DFW and RAR have the

same performance.

Figure 5 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay

Data: Truncated Normal Distribution / Testing Flight Network: N1)
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Figure 6 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay

Data: Gamma Distribution / Testing Flight Network: N1)
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Figure 7 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay

Data: Log-normal Distribution / Testing Flight Network: N1)
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Figure 8 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /

Testing Delay Data: Truncated Normal Distribution / Testing Flight Network: N1)
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Figure 9 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /

Testing Delay Data: Gamma Distribution / Testing Flight Network: N1)
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Figure 10 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /

Testing Delay Data: Log-normal Distribution / Testing Flight Network: N1)
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Figure 11 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing

Delay Data: Truncated Normal Distribution / Testing Flight Network: N1)
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Figure 12 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing

Delay Data: Gamma Distribution / Testing Flight Network: N1)
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Figure 13 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing

Delay Data: Log-normal Distribution / Testing Flight Network: N1)
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Figure 14 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay

Data: Truncated Normal Distribution / Testing Flight Network: N2)

−10%

−5%

0%

5%

10%

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Budget of Uncertainty

R
el

at
ive

 R
ed

uc
tio

n 
ov

er
 D

FW
, i

n 
pe

rc
en

t

mean multp. = 0.5
mean multp. = 0.75
mean multp. = 1
mean multp. = 1.25
mean multp. = 1.5
mean multp. = 1.75
mean multp. = 2

Average Total Propagated Delay

−10%

−5%

0%

5%

10%

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Budget of Uncertainty

R
el

at
ive

 R
ed

uc
tio

n 
ov

er
 D

FW
, i

n 
pe

rc
en

t

mean multp. = 0.5
mean multp. = 0.75
mean multp. = 1
mean multp. = 1.25
mean multp. = 1.5
mean multp. = 1.75
mean multp. = 2

Standard Deviation of Total Propagated Delay

−10%

−5%

0%

5%

10%

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Budget of Uncertainty

R
el

at
ive

 R
ed

uc
tio

n 
ov

er
 D

FW
, i

n 
pe

rc
en

t

mean multp. = 0.5
mean multp. = 0.75
mean multp. = 1
mean multp. = 1.25
mean multp. = 1.5
mean multp. = 1.75
mean multp. = 2

Maximum Total Propagated Delay

Γ Γ Γ



Yan and Kung: Robust Aircraft Routing 29

Figure 15 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay

Data: Gamma Distribution / Testing Flight Network: N2)
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Figure 16 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay

Data: Log-normal Distribution / Testing Flight Network: N2)
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Figure 17 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /

Testing Delay Data: Truncated Normal Distribution / Testing Flight Network: N2)
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Figure 18 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /

Testing Delay Data: Gamma Distribution / Testing Flight Network: N2)
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Figure 19 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /

Testing Delay Data: Log-normal Distribution / Testing Flight Network: N2)
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Figure 20 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing

Delay Data: Truncated Normal Distribution / Testing Flight Network: N2)

−20%

−15%

−10%

−5%

0%

5%

10%

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Budget of Uncertainty

R
el

at
ive

 R
ed

uc
tio

n 
ov

er
 D

FW
, i

n 
pe

rc
en

t

corr. multp. = ln(3/4)
corr. multp. = ln(5/6)
corr. multp. = ln(11/12)
corr. multp. = 0
corr. multp. = ln(1+(e−1)/12)
corr. multp. = ln(1+(e−1)/6)
corr. multp. = ln(1+(e−1)/4)

Average Total Propagated Delay

−20%

−15%

−10%

−5%

0%

5%

10%

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Budget of Uncertainty

R
el

at
ive

 R
ed

uc
tio

n 
ov

er
 D

FW
, i

n 
pe

rc
en

t

corr. multp. = ln(3/4)
corr. multp. = ln(5/6)
corr. multp. = ln(11/12)
corr. multp. = 0
corr. multp. = ln(1+(e−1)/12)
corr. multp. = ln(1+(e−1)/6)
corr. multp. = ln(1+(e−1)/4)

Standard Deviation of Total Propagated Delay

−20%

−15%

−10%

−5%

0%

5%

10%

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Budget of Uncertainty

R
el

at
ive

 R
ed

uc
tio

n 
ov

er
 D

FW
, i

n 
pe

rc
en

t

corr. multp. = ln(3/4)
corr. multp. = ln(5/6)
corr. multp. = ln(11/12)
corr. multp. = 0
corr. multp. = ln(1+(e−1)/12)
corr. multp. = ln(1+(e−1)/6)
corr. multp. = ln(1+(e−1)/4)

Maximum Total Propagated Delay

Γ Γ Γ



Yan and Kung: Robust Aircraft Routing 31

Figure 21 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing

Delay Data: Gamma Distribution / Testing Flight Network: N2)
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Figure 22 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing

Delay Data: Log-normal Distribution / Testing Flight Network: N2)
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Appendix B: Method to Perturb Spearman’s Rank Correlation Coefficient Matrix

The method is inspired by Galeeva et al. (2007) where they provide a way to generate correlation matrices

around a base correlation matrix by perturbing its eigenvalues. The detailed procedure we use is as follows,

1. Apply eigenvalue decomposition on the Spearman’s rank correlation coefficient matrix ρtrain for the

training data set,

ρtraini,j =

|F|∑
k,l=1

Vi,kΛk,lVl,j ,

where Λk,l = λkδk,l. δk,l = 1 if k = l; 0, otherwise. λ1 >λ2 > · · ·>λ|F| are the |F| eigenvalues for ρtrain. V is

the eigenvectors.

2. Create variables σ1, σ2, · · · , σ|F| for each eigenvalue, which satisfy the following set of equations

λ1e
σ1 = λ2e

σ2 = · · ·= λ|F|e
σ|F|
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There are multiple solutions for the set of equations above. We fix σ1 = 1, and the remainings can be

calculated accordingly. Since λ1 is the largest eigenvalue, it can be seen easily that σ2, · · · , σ|F| > 1.

3. Perturb these eigenvalues with a parameter α. The perturbed eigenvalues λ̂1, λ̂2, · · · , λ̂|F| will be calcu-

lated as λ̂i = λie
σiα, ∀i= 1, · · · , |F|.

4. Normalize the perturbed eigenvalues to make
∑|F|

i=1 λ̂i = |F|.
5. Construct matrix ρ′ with the perturbed eigenvalues and the eigenvectors for ρtraini,j ,

ρ′i,j =

|F|∑
k,l=1

Vi,kΛ̂k,lVl,j ,

where Λ̂k,l = λ̂kδk,l.

6. Construct Spearman’s rank correlation coefficient matrix by normalizing matrix ρ′,

ρtesti,j =
ρ′i,j√
ρ′i,iρ

′
j,j

The normalizing step makes sure that −1≤ ρtesti,j ≤ 1 and ρtesti,i = 1, ∀i= 1, · · · , |F|.
To understand the meaning of parameter α∈ (−∞,1]:

• if α= 1, λ̂1 = λ̂2 = · · ·= λ̂|F| = 1, thus Λ̂ = I and ρ′ = V Λ̂V T = V V T = V V −1 = I. This leads to ρtest = I,

which means the testing data will have independent primary delays.

• if α= 0, then λ̂i = λi, ∀i= 1, · · · , |F|. This means the testing data will have the same Spearman’s rank

correlation coefficient matrix as the training data.

• for the case α→−∞, we have

ρtesti,j =
ρ′i,j√
ρ′i,iρ

′
j,j

=

∑|F|
k,l=1 Vi,kΛ̂k,lVl,j√∑|F|

k,l=1 Vi,kΛ̂k,lVl,i

√∑|F|
k,l=1 Vj,kΛ̂k,lVl,j

=

∑|F|
k=1 Vi,kλ̂ke

σkαVk,j√∑|F|
k=1 Vi,kλ̂ke

σkαVk,i

√∑|F|
k=1 Vj,kλ̂ke

σkαVk,j

Divide both the numerator and denominator by eα, we have

ρtesti,j =
Vi,1λ̂1V1,j +

∑|F|
k=2 Vi,kλ̂ke

(σk−1)αVk,j√
Vi,1λ̂1V1,i +

∑|F|
k=2 Vi,kλ̂ke

(σk−1)αVk,i

√
Vj,1λ̂1V1,j +

∑|F|
k=2 Vj,kλ̂ke

(σk−1)αVk,j

Since σ2, · · · , σ|F| >σ1 = 1, as α→−∞ we have

lim
α→−∞

ρtesti,j =
Vi,1λ̂1V1,j

|Vi,1|λ̂1|V1,j |
=

Vi,1V1,j

|Vi,1V1,j |
=

{
1, Vi,1V1,j > 0
−1, Vi,1V1,j < 0

This means the testing data will be perfectly correlated. Whether it is positively or negatively correlated

depends on the eigenvectors of ρtrain.
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