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Abstract

We consider the network revenue management (RM) problem under a MultiNomial Logit (MNL)
discrete choice model. We present two mathematical formulations that build on previous research,
focusing on reducing the size and complexity of the problem while maintaining an accurate represen-
tation of passenger choice and industry practices. The first formulation addresses the computational
issues of traditional network revenue management by introducing a Mixed Integer Program (MIP)
that reduces the number of variables needed to consider while maintaining revenue performance
versus other models. The second formulation eliminates the need for static pricing of fare classes, as
seen in most RM literature, and considers a continuous pricing decision linked with ticket availability,
directly incorporating passenger sensitivities to price and other attributes. Both models perform
well in example test cases, improving on popular leg- and network-based RM methods used in
practice.

Keywords: Airline Revenue Management (RM), MultiNomial Logit (MNL) Choice Model, Mixed
Integer Programming (MIP), Dynamic Pricing

1. Introduction

From its inception, airlines have used Revenue Management (RM) techniques to improve their
revenue performance or yield by optimizing the passenger mix through fare class seat availability
or bid price hurdle rates. Both leg-based and Origin-Destination (O&D)-based approaches have
used a common assumption that the passenger demand associated with a given flight or O&D
path and fare class are known and forecast independent of other options within the market. For
example, demand forecasts for full fare passengers on BOS-PHX-LAX are based on historical traffic
observations on that specific path and do not explicitly account for the passenger demand associated
with other paths in the market like BOS-ORD-LAX. In addition, most RM approaches used in
practice today assume that fare classes are mutually exclusive of one another when optimizing seat
allocations or bid prices. These assumptions preclude the demand interactions between different
routes, fare classes and competition from other carriers in the same markets, and limit the quality of
the optimization results and controls. To remove the limitations of these assumptions, the demand
forecasts and optimization must consider the interactions between the different fare classes and
routes available to potential passengers at the point of sale.

In this paper we propose two mathematical modeling formulations that explicitly incorporate
the fare class and routing interactions using a MultiNomial Logit (MNL) choice model. The first
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formulation, which we refer to as the Choice-based Mixed Integer Program (CMIP), represents an
alternative formulation to the Choice-based Deterministic Linear Program (CDLP), as proposed
by Liu and van Ryzin (2008). The CMIP assumes independent O&D markets can be solved
independently, greatly reducing the size of the problem. The second formulation, referred to as the
Price-Dynamic Choice-based Mixed Integer Program (PCMIP), takes a different approach to RM
by optimizing ticket availability and price. Most choice-based revenue management models assume
static pricing when selecting the availability of fare classes while ignoring the effects pricing has on
passenger preference. The PCMIP directly incorporates price-dependent sensitivities, as well as
other passenger preferences, while simultaneously optimizing fare class availability and prices. The
added flexibility of setting prices within the optimization model nets higher revenue at a cost of
complexity.

The remainder of this paper is organized as follows. Section 2 reviews the recent literature
and developments associated with incorporating passenger choice into the RM process, Section 3
presents the CMIP formulation, Section 4 solves an illustrative example and compares performance
to other models, Section 5 solves larger examples and compares performance, Section 6 introduces
the PCMIP formulation and examples, and Section 7 highlights the conclusions and potential future
research directions.

2. Literature Review

Although many RM models have been developed over the past 30 years, the following literature
review focuses on the choice-based demand approaches that aim to model consumer behavior more
accurately for the network RM problem.

To provide a framework for choice-based modeling, we first present an overview of some of
the leg-and O&D-based methods available. Two leg-based independent demand methods worth
noting, however, are that of Littlewood’s 1972 paper (which was later republished in 2005), and
Belobaba (1989). Often, Littlewood (2005) is cited as being one of the first models to solve the RM
problem. His model determined the necessary protection limits by comparing two products’ expected
demand and fares. Littlewood (2005) proposed a rule, termed Littlewood’s Rule, which determines
protection levels for the higher fare classes. Belobaba (1989) expanded on Littlewood’s research, and
created the Expected Marginal Seat Revenue (EMSR) model. His first model, EMSR-a, executed
pair-wise comparisons to determine how many seats to reserve for higher fare classes. The EMSR-a
model could compare any number of pairs, and would aggregate protection levels as it moved up
the fare class buckets (Belobaba, 1989). Later, Belobaba expanded on his own model, creating
the EMSR-b methodology. EMSR-b, instead of aggregating over protection levels, aggregates the
demand for higher paying passengers, and calculates a weighted fare for them (Belobaba, 1992).
This weighted fare is then used for a comparison, and protection levels are calculated. For a more
complete history of independent demand RM models, we refer the reader to Weatherford and Ratliff
(2010). These independent demand models, like that of Littlewood (2005) and Belobaba (1989),
were computationally efficient, but they lack the network interactions and competitive effects present
in today’s complex airline markets. To this end, research moved towards choice-based modeling
techniques for solving the network RM problem.

Two of the first, and possibly most influential, papers in choice-based modeling for network RM
were Gallego, Iyengar, Phillips, and Dubey (2004), and Talluri and van Ryzin (2004). In Gallego
et al. (2004), the authors propose a linear program that solves the network RM problem with
a general discrete choice model. Using the probability of a purchase as a parameter, the model
determines the amount of a time that each set of policies, defined by the itinerary and fare, is to
be offered. This method maximizes the revenue across the entire network, by selecting a subset of



available policies, constrained by the available space consumed on a leg (Gallego et al., 2004). This
model is later developed into the Choice-based Deterministic Linear Program (CDLP), and has
become a benchmark for the testing of newer models in the field of network RM. In particular, the
CDLP determines the optimal amount of time to offer a set of policies, S. This set S is comprised
of open and closed policies for each O&D fare class combination within the network.

Talluri and van Ryzin (2004) formulated the problem as a dynamic program, which modeled the
probabilities of different purchases using a general discrete choice model, and determined which
policy sets to offer based on the available capacity, similar to the model in Gallego et al. (2004).
Talluri and van Ryzin introduced the concept of efficient sets, which allowed for search techniques
to manage the complex nature of the solution space. From this point on, research in choice-based
RM has gone in one of three directions: solution methodologies for the CDLP, approaches to solve
dynamic programming formulations, or formulations that are new altogether.

2.1. CDLP Solution Methodologies

In Kunnumkal and Topaloglu (2008), the authors created an alternative form of the CDLP, and
obtained better results through the solution of the primal. Liu and van Ryzin (2008) expanded
on the original CDLP, and developed an iterative approach by applying the bid prices generated
from the CDLP to a leg-level decomposition approach to Talluri and van Ryzin (2004)’s dynamic
program. The results of their method provided capacity and time-dependent bid prices, which
are useful for industry application. The authors also expanded on the notion of efficient sets, and
applied them to the CDLP, generating methods for solving this complex problem (Liu and van
Ryzin, 2008). Shortly thereafter, Bront, Mendez-Diaz, and Vulcano (2009) developed a column
generation algorithm to solve the CDLP, in the special case of having non-disjoint markets. Their
model considered situations where market demand can overlap, and competition can arise between
0&D’s as well as pricing options. The authors provide details on how to solve the column generation
algorithm for the CDLP, as well as provide two methods for solving the subproblem of determining
which set to introduce into the reduced primal problem (Bront et al., 2009). Talluri (2011) relaxed
the CDLP, and solved a Segment-based Deterministic Concave-Program (SDCP), which provided
looser upper bounds to the original problem. Following this relaxation, Meissner, Strauss, and
Talluri (2013) expanded on the model to include constraints on the product selections, creating the
extended-SDCP.

2.2. Approaches to Solve Dynamic Programming Formulations

Although Talluri and van Ryzin (2004) provided one of the first models utilizing dynamic
programming formulations for network RM, others also explored this approach. Zhang and Cooper
(2005) offered a different perspective, and created a Markov Decision Process (MDP) formulation
for cases where multiple flights are being offered between O&D’s in short time spans. Later, ?
developed an MDP model that allowed for substitution to take place between flights. Although
both of these MDP formulations could be solved via dynamic programming, more efficient methods
were found in the form of inventory-pooling (Zhang and Cooper (2005)) and heuristics (Zhang
and Cooper (2009)). Some models were developed in conjunction with dynamic programs, like in
Farias and van Roy (2007) and Adelman (2007). In Farias and van Roy (2007), the authors model
the network RM problem as a dynamic program, and then solve it with a linear programming
approximation. Their model is unique, as it solves for the bid prices directly, rather than producing
policy-based decisions. Adelman (2007) utilized an affine approximation for the value function of
his dynamic program. Similar to Farias and van Roy (2007), his model determines the bid prices for
the network, and generates a dynamic set of bid prices. Kunnumkal and Topaloglu (2010) developed
their own dynamic programming decomposition method, which solves the single-leg decomposition



with revenue estimates for each leg in an itinerary. The revenue estimates were generated ahead of
time through an optimization model utilizing the choice-based modeling schema.

Some models shift the focus from policy decisions and generate solutions that determine seat
allocation policies. Huang and Liang (2011) developed a dynamic programming formulation, which
they solve by estimating the value function of the dynamic program (DP) with a sampling technique.
Their model solves for the seat control policies, rather than open or closed fare class decisions.
In Zhang (2011), the authors proposed an alternative way to solve the dynamic programming
formulation of Talluri and van Ryzin (2004), and provided better bounds on the optimal solution
for the original problem. Kunnumkal (2011) took a different approach to solving the dynamic
program, and offered two approximation models for solving the choice-based network RM. Lagrangian
relaxations were done for both methods, one based on relaxing the flight leg capacities and the other
based on perfect demand information. His model generates capacity-dependent policies, similar
to that of the original dynamic programming formulation (Kunnumkal, 2011). Another unique
formulation is found in Meissner and Strauss (2012), in which they develop a dynamic programming
formulation that takes into account inventory sensitive bid prices. Their model estimates the value
function of an MDP to determine capacity-dependent bid prices.

2.3. Alternative Formulations

Other models different from the typical dynamic programming formulations and CDLP were also
developed. van Ryzin and Vulcano (2008) developed an optimization model that solves the choice
model independently from the optimization model itself, creating an easier and quicker solution
methodology to the problem. Their model solves for nested protection levels, rather than policy or
bid price optimization. Chaneton and Vulcano (2011) sought to simplify the problem by changing
the formulation of the choice-based demand models. They estimate the choice-based demand by
applying a linear approximation to the demand, creating a continuous function with a stationary
point found using a sub-gradient algorithm. Their model allows for partially accepted itineraries in
which the passenger requests can be accepted on legs within the itinerary, but not the entire itinerary
itself (Chaneton and Vulcano, 2011). This approach is similar to that of Topaloglu (2009), in which
a bid price solution methodology is developed by applying a leg-level decomposition approach. Chen
and de Mello (2010) developed a formulation that modeled the buy-up behavior directly. Their
model allows for passengers to step up in fare classes if their desired fare class is unavailable. From
this buy up pattern, the authors were able to determine a demand stream, which then was used to
solve a set of optimization problems.

Gallego, Ratliff, and Shebalov (2011) introduced the generalized attraction model, which can
be applied to any demand input. The independent demand, as well as basic attraction models,
were found to be special cases of this generalized attraction model. They develop their model to
combat the complexity of the CDLP, resulting in a new formulation known as the Sales Based
Linear Program (SBLP). Another mathematical model, in the form of a mixed integer program,
was developed by Meissner and Strauss (2010). Their model solved for both policy decisions on
restricted fare classes (i.e., fare classes in which discrete fares are determined in advance), as well
as pricing decisions on unrestricted fare classes (i.e., fare classes in which a continuous range of
available prices exist). Kunnumkal (2011) developed a two-step method for solving the network
RM problem. His method first determines which policies are optimal through a choice-based mixed
integer program, followed by a linear program that determines the marginal value of seats. He
argues that the linear program can be randomized, and provides good solutions compared to those
obtained by the CDLP (Kunnumkal, 2011). Meissner and Strauss (2011) also developed a mixed
integer program, under the assumption that market segmentation is weak. This creates ambiguity
in the demand stream, and their model proved to be computationally intractable. The authors



provided alternative solution methods for solving their mixed integer program, citing cases where
shorter run times were more advantageous than computational accuracy.

2.4. Dynamic Pricing

Dynamic pricing in a choice-based environment is a relatively new area of research within RM.
Prior to choice-based demand models being the in the spotlight, some research had focused on the
importance of pricing, as seen in Jacobs, Ratliff, and Smith (2010), where the authors investigate
the relationship between pricing and revenue management controls. Jacobs et al. (2010) consider
the impact capacity has on the dynamic pricing problem, creating a “price balance statistic” used
for evaluating the quality of a strategy and finding the optimal mix of pricing, scheduled capacity,
and RM controls.

Choice-based dynamic pricing research has taken a different approach. Aydin and Ryan (2000)
consider a retail setting where consumers choose products based on a pre-defined selection and
pricing setup. Zhang and Cooper (2009) introduce a Markov decision process to address dynamic
pricing in an MNL environment. They consider multiple substitutable flights in a single O&D
market, and show their model is intractable for realistic settings. In a similar approach, Dong,
Kouvelis, and Tian (2009) develop a dynamic programming formulation in a retail environment.
They consider an environment with a long lead time and short selling environment, where the
retailer must determine both inventory and pricing. More recently, Zhang and Lu (2013) introduce
a dynamic program that addressed pricing in airline RM. The authors introduce a dynamic program
for dynamic pricing and offer a non-linear programming approximation approach. They compare
their methods against both static pricing models and other choice-based demand models, concluding
that dynamic pricing could have substantial gains versus their static counterparts. In the following
sections we present two new formulations that improve on the research reviewed here.

3. Mathematical Model

We consider a network with legs | € L, and containing multiple markets defined by set J. A
market j represents an O&D pair. There exists a set of policies, I;, defined for each market j € J,
where a policy 7 € I; is defined as a pair of itinerary and fare class assignments. Since each market
can have multiple itineraries (i.e., paths) and fare classes, we define the set Kj; that contains all
defined fare class-itinerary pairs for market j € J and policy ¢ € I;. The planning horizon associated
with this model can be viewed as the time to departure. We discretize time into periods and denote
the index set of time periods by 7. Having defined the network parameters, the parameters and
decision variables for our mathematical formulation are formally defined in Table 1.

At Number of customer requests for flights to the network in period ¢, t € T
P; | Probability of an arrival for market j, j € J
Sji | Probability that a purchase is made for market j under policy i € I;
Pyjq | Probability of a purchase on fare class-itinerary k € Kj;,
given purchase is made for market j under policy i € I;
Ry | Revenue for a purchase on fare class-itin. k& given policy ¢ is used
Ay, | Binary parameter representing consumption of leg [ for fare class-itin. k € Kj;
a Capacity of leg | € L available at the beginning of the planning horizon
Zjit | Fraction of period ¢ demand for market j served under policy 7 € I;
Xji+ | Binary decision variable to use policy i € I; for market j in period ¢t € T'

Table 1: Table of notations used in CMIP



As an example, consider the network given in Figure 1, which is the same example used in Bront
et al. (2009) and Liu and van Ryzin (2008). The network contains three nodes and leg capacities of
10, 5 and 5 seats for legs 1, 2, and 3, respectively. Each leg represents a single flight, thus there are
no parallel flights for this network. Table 2 includes further data on this example; eight products
were defined by what the authors refer to as “O&D path” and fare class combinations.

Table 2: O&D paths and fare classes for the
illustrative network example (Liu and van Ryzin,

2008)
Origin-Dest.
Product Path Class | Fare
1 A-C High | $1200
2 A-B-C | High | $800
3 A-B High | $500
1 B-C High | $500
5 A-C Low | $800
6 A-B-C Low | $500
Figure 1: Illustrative example: Three-leg network 7 A-B Low $300
8 B-C Low | $300
Arrival | Consideration | Preference Utility of
Segment | Rate Set Vector No Purchase

1 0.15 {1,5} (5, 8) 2

2 0.15 {1,2} (10, 6) )

3 0.20 {5,6} (8, 5) 2

4 0.25 {3,7} (4, 8) 2

) 0.25 {4,8} (6, 8) 2

Table 3: Data on demand and customer preferences for the illustrative network example (Liu and van Ryzin, 2008)

Table 3 includes data on customer preferences and utilities of the different products for each of
the five segments. The preference vectors represent the utility that the products in the consideration
set provides for the segment. For example, segment 1 has a consideration set of {1,5}, and a
preference vector of (5,8). This means that the first segment has a utility of 5 for product 1 (i.e.,
the A-C itinerary with a cost of $1200) and a utility of 8 for product 5 (i.e., the A-C itinerary with
a cost of $800). The larger utility value implies that customer segment 1 prefers the A-C itinerary
with a cost of $800 over the A-C itinerary with a cost of $1200. The no-purchase utility corresponds
to the option of not purchasing either product.

For our formulation, the network illustrated in Figure 1 would result in three markets, i.e.,
J = {AB,BC, AC}. Note that market AC contains two different itineraries, the direct path from A
to C as well as the path containing the connection A-B-C. For each market, j € J, there is a set
of available policies, I;. Each policy lists the available options, each defined by an itinerary and
the fare classes. For instance, the AC market has two competing paths, AC and ABC, thus the
available policies for the AC market would be all combinations of high and low fare class options, as
well as the possibility of closed itineraries.

When implementing policies in real life airline RM systems, certain fare classes are nested within
their lower fare class counterparts. For instance, the policy containing AC high and AC low open
simultaneously would be equivalent to opening only AC low, since policy implementation is generally
based on bid prices. That is not to say the higher fare class is closed, just that there is no situation



where an airline would refuse a higher paying passenger just because the policy only defines AC
low as being open. This natural nesting among the fare classes eliminates the need to separately
define policies in which AC high and AC low are open simultaneously. The elimination of these
simultaneous policies, however, removes any buy up potential, thus the model makes a conservative
assumption that buy up is negligible.

Finally, the set Kj; includes all fare class-itinerary pairs defined for market j under policy i € I;.
The first component, market, is defined by the available market set J. The policy component is
defined by the set of available policies I;. The itinerary path is determined by the structure of the
network itself. The combination of appropriate market-policy-itinerary path groupings generates
the set K, which is referred to as the fare class-itinerary. For the illustrative example, the values of
these sets can be seen in Table 4, in the fourth column.

We can now determine the values of our parameters A\, Pj, A, Ry, Pyji and Sj; for the
illustrative network example. For this example, we assume that the arrival rate, or the number
of unit demand arrivals per period, stays constant at the values listed under the column labeled
“Arrival Rate” in Table 3 for each customer segment. We actually use these values for \;P; for each
market. From Table 3 the arrival rate for market AC, for example, will be equal to the sum of the
arrival rate values listed for customer segments 1, 2, and 3, i.e., A\{Pac = 0.50 customers for each
time period. Similarly, AsPap = 0.25 and A\ Pgc = 0.25 for all t € T'. Note that in the example, the
time is scaled so that the total arrival rate, \; = 1.

The values of Ay; can be determined by examining the network and fare class-itineraries. If fare
class-itinerary k € Kj; consumes space (i.e., 1 unit of capacity) on leg [, then Ay is assigned a value
of 1. Otherwise, Ay is assigned a value of zero. Since Ry represents the revenue earned for fare
class-itinerary k being purchased, those values can be read directly from the pricing table.

The values for Py ;; were determined through conditioning. For instance, if the policy available
was AC High/ABC High, then a fraction of the purchases would purchase the AC itinerary while
others would purchase the ABC itinerary. Since we are conditioning on the fact that a purchase
was made, we merely need to determine what fraction of passengers purchased the AC High option
(or, “fare class-itinerary”) and what fraction of passengers purchased the ABC High option. To do
this, we must first determine which customer segments, as defined by Table 3, prefer each of the
options. For the AC High option (defined as product 1), we can see that customer segments 1 and 2
have utility values for this product (as defined by their consideration sets). Likewise, for the ABC
High option (defined as product 2), we can see that only customer segment 2 has preference for this
product.

We first calculate Sj;, which denotes the probability of a purchase by an arriving market j
customer under policy i € I;. For the above example of policy AC High/ABC High for the AC
market, the probability of purchase by a market AC customer under policy ¢ € I; can be calculated
as a weighted average of the purchase probabilities that can be calculated from the given utilities of
the products available under the AC High/ABC High policy, and that of no purchase. That is,

S _ 5 (015 1046 (05)  (020) .
AC,AC High/ABC High = 577 "9 | ) 5() 10+5+6 \0.50 050/ 0

by using the given utilities and conditioning on the event that the AC customer is from segment 1,
2 or 3, respectively.

Note that the utility values used above represent the respective et terms used in the MNL model.
Essentially, the ratio 5/(5 + 2) can be rewritten in traditional MNL format as 699 /(e!-609 4 £0-693)
where the values of 1.609 and 0.639 would represent the MNL utilities for the AC market for AC High
and the no purchase option, respectively. We use this simplified notation for ease of representation,
following the tradition set by previous papers in this area.



Then, the probability that the customer bought fare class-itinerary k € Kxc Ac High/ABC High
given that a purchase was made by an AC customer under policy AC High/ABC High can be
calculated by

5 (0.15) 4 10 (0.15)
P _ 542 \0.50 104546 \0.50/ __ 0.806
AC High|purchase under AC High/ABC High — 0.443 - Y- .

Similarly, we can calculate

6 (0.15)
P _ 104546 \0.50/ __ 0.194
ABC High|purchase under AC High/ABC High — 0.443 — Y. )

or, simply by observing that for this policy with two fare class-itinerary options,

Prpc High|purchase under AC High/ABC High — 1= Pac High|purchase under AC High/ABC High -

Continuing similarly, we obtain the values in Table 4 for this illustrative example. Note that
in columns one through five, the table provides the markets (i.e., j € J), the policies defined for
each market, (i.e., ¢ € I;), the purchase probability for market j under each policy i € I;, (i.e., Sj;
values), the defined fare class-itineraries (i.e., set Kj;) for each market j under policy i € I;, and
finally, the conditional probability that the option given by a particular fare class-itinerary j € Kj;
will be selected, given that a purchase for market j was made under policy i € I;.

Fare Class-Itineraries
Market (Set J) Policies (Set I;) Sji (Set Kj;) Pyyji
AR AB High 0.667 AB High 1
AB Low 0.857 AB Low 1
BC BC High 0.750 BC High 1
BC Low 0.875 BC Low 1
. . AC High 0.806
AC High/ABC High | 0.443 ABO High 0104
. AC High 0.556
A AC High/ABC Low | 0.761 ABC Low 0.444
. AC Low 0.681
AC Low/ABC High | 0.809 ABC High 0.319
AC Low 0.773
AC Low/ABC Low | 0.607 ABC Lo 0907
. AC High 1
AC High/ABC Closed | 0.414 ABC Closed 0
AC Low 1
AC Low/ABC Closed | 0.580 ABC Closed 0
. AC Closed 0
AC Closed/ABC High | 0.279 ABC High 1
AC Closed 0
AC Closed/ABC Low | 0.347 ABC Low 1

Table 4: Set definitions and calculated parameters for the illustrative example adapted from Liu and van Ryzin (2008)

Finally, our formulation uses the following decision variables. Xj;; represents the binary variable
that takes on a value of 1 if the decision is to use policy 7 for market j in period ¢, and Zj;; represents



the fraction of market j demand served under policy ¢ in period ¢. To expand on the variable Zj;,
consider an example where, for a given market policy ¢ and five time periods, Zj;; takes on values
of (0,0,1,1,0.172). This vector would represent the following set of decisions. For time periods
1 and 2, policy ¢ is not available and no demand for market j would be served under this policy.
During time periods 3 and 4, policy ¢ is available, and any arriving demand for market j would be
served. Finally, during time period 5, policy i is available, but only 17.2% of the potential demand
should be served. Note that the term “served” here does not necessarily mean that they will be
purchasing a ticket; it basically means that they get to consider the various options available to
them for market j, under policy ¢ € I;. As a result of this consideration, they may or may not
purchase a ticket on market j. Using these two decisions variables, and the parameters previously
defined, we formulate the Choice-based Mized Integer Program (CMIP) as follows.

Maximize Y2 MNP Y0 Zjin Sji Y. RiPyyji (1)
teT jeJ icl; kEK s
Subject to:
Z z Z Z /\tPijitSjiPk\j,iAkl <, foralll € L, (2)
tETjGJiEI]' k‘EKji
Zint§17 forall je JiteT, (3)
iEIj
Zjit < int , for all j e Ji e Ij,t eT, (4)
Zjit S RJF,XjZ‘t S {0, 1}, for all j € J,i € Ij,t eT. (5)

The objective function (1) represents the total expected revenue across all time periods for the
decision variable Zj;;;. The objective function can be broken into two main components: the arrival
rate of demand per market and the expected revenue for a given policy. The first component, the
arrival rate of demand per market, is the product of the expected number of customer requests
in period ¢, (i.e., A¢) and the probability that an arrival demands a ticket for market j, (i.e., P;).
This product, A\;P;, represents the expected number of arrivals in time period ¢ € T' for market j.
The second component, the expected revenue obtained from market j under policy ¢ € I;, E[R;(i)],
assuming that customer preferences remain unchanged throughout the planning horizon, can be
calculated as follows.

E[R;(i)] = (1—Sj)0+S;; E[Revenue | purchase on market j under policy i € I;]
= Sji Y RiPyj . (6)
keKj;

where Ry denotes the revenue from a sale on fare class-itinerary k € Kj;, Py;; denotes the conditional
probability of a purchase on fare class-itinerary k € Kj;, given a purchase for market j is made
under policy ¢ € I;, and finally, Sj; is the probability that a purchase for market j is made under
policy i € I;.

Constraint set (2) ensures that the capacity constraints on the legs are not violated. The
continuous decision variable, Z;;;, allows for the partial accommodation of demand, and facilitates
the determination of bid price values for the flight leg, [ € L. The purpose of a bid price is to
represent the marginal value of an extra seat on a given leg. In the event constraint set (2) is
binding, we can increase the capacity of a leg to determine what impact this increase would have
on the objective function. The value of variable Z;;; could be increased a marginal amount, no
greater than one, if the current value is less than one. In the event Z;;; was already at a value of
one, then the model could select a different Z;;; to improve the objective function. This would



force the constraint to be binding, again, and the objective function, which also contains the Z;;;
variable, would increase appropriately. This increase would be analogous to the shadow price of a
linear program, thus it can be used as the marginal value of a seat on a given leg. The marginal
value of a seat is then translated into the bid price for the leg, and could be used for bid price based
control policies.

One difference between our formulation and other formulations stems from the fact that the
other models account for all market combinations in the form of sets, whereas CMIP combines
policies for O&D markets to determine the overall policy for the network. For instance, the CDLP
selects which sets are optimal, while the CMIP model selects, individually, which O&D fare class
combinations optimize our revenue. Since the CMIP focuses on a market-by-market level, the total
number of variables for the problem is greatly reduced, which results in reasonable solution times
for larger networks, as we show for a large network instance. As mentioned above, the complexity
of the network greatly impedes the quality of the solutions that one can obtain from the CDLP
formulation within a reasonable run time. Hence, having fewer variables in the CMIP formulation
allows for the modeling of larger networks with solution times that are implementable for industry
use.

To illustrate the magnitude of the difference in variables, consider the small network that we
considered earlier, depicted in Figure 1. In this network, for a single time period, the CMIP has
a total of 24 variables and 18 constraints. The CDLP, for the same scenario, has a total of 255
variables and 4 constraints. As we increase the number of time periods, the CMIP increases in both
variable and constraint totals, while the CDLP does not. The advantage of the CMIP, however, is
when the complexity of the network is increased. Adding just one more node with respective high
and low fare classes and connections (assuming this node is independent of the markets currently in
the network), would only increase the CMIP to 28 variables and 22 constraints. This same network
for the CDLP formulation would have 16,383 variables and 5 constraints. The CDLP has a smaller
constraint set, yet the variable space is exponentially increasing as the complexity of the network is
increased. The CMIP has a much smaller variable space, and a reasonably sized constraint space.
As the complexity of the network is increased, the variable and constraint space does not increase
in an exponential fashion; the total number of variables for the CMIP, however, would increase
multiplicatively for each additional time period.

4. Solution of the Illustrative Example

We solved the CDLP and CMIP formulations for the example presented above (see Figure 1),
and implemented the obtained policy decisions in a simulation to compare the performance of the
two approaches. We used AMPL and Gurobi 5.0.1 to build and solve the formulations. We assumed
that buy-up did not happen, as there only is a very small probability that a passenger will purchase
a higher priced ticket if a lower priced ticket is available.

We programmed the simulation in MATLAB following a traditional Monte Carlo simulation
approach. First, the simulation takes bid prices as the control, and generates the available fare
classes in each time period. We assume a stationary arrival rate of customers (I.e., Ay = A for every
time period t € T') and generate exponential customer interarrival times with this rate. For each
customer, the simulation model generates the identity of the market that the customer is interested
in purchasing, as well as what, if anything, the customer purchases using Pj, Sj; and Py ; in a
relatively standard random number generation scheme. In case of a purchase, the capacity of the
legs for the requested itinerary is reduced, and the total revenue is updated. We ran the simulation
for 2000 iterations for each of the network instances tested. This simulation is used for all of the
results following the illustrative example.
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The solutions from the two formulations generated similar bid prices across the majority of the
tests. The average total revenue values obtained with the two approaches were also comparable. As
seen from Table 5, the CDLP and CMIP reach identical bid prices in every case except for T'=15
and A = 5. Due to the nature of this illustrative example, the leg AC only has pricing options of
$800 and $1200. Hence, having a bid price of $750 implies both pricing options are to be open.
Note that obtaining a bid price of $0 (which can be observed in the case of the CMIP for T'= 5 and
A =5), would have the same effect as having a bid price of $750. This implies the CDLP and the
CMIP generate identical bid price control strategies across all combinations for this example.

CMIP Bid Prices CDLP Bid Prices | Obj. Fn. Obj. Fn.
A T | AB AC BC | AB AC BC CMIP CDLP
1| $0 $0 $0 $0 $0 $0 $515 $497
1 5 $0 $0 $0 $0 $0 $0 $2,577 $2,485
10 | $0 $0 $0 $0 $0 $0 $5,155 $4,971
1| $0 $0 $0 $0 $0 $0 $2,577 $2,485
5 5 $0 $0 $500 | $0 $750  $500 | $10,664  $10,064
10 | $300 $1200 $500 | $300 $1,200 $500 | $13,168  $13,167
1| $0 $0 $0 $0 $0 $0 $5,155 $4,971
10 5 | $300 $1,200 $500 | $300 $1,200 $500 | $13,168  $13,167
10 | $500 $1,200 $500 | $500 $1,200 $500 | $13,500  $13,500

Table 5: Results from CMIP and CDLP formulations

For the results presented in the last two columns of Table 5, the CMIP increased expected
revenue by an average of 2.72% when compared to the CDLP. Although these models are similar,
the way they handle expected traffic is different. The CDLP uses the direct probability of purchases
generated from the MNL choice model. The CMIP uses the probability of purchases for a given fare
class-itinerary, conditioned on a purchase being made. These differences are subtle, yet impact the
CDLP and CMIP objective functions, so comparison on these values alone is insufficient. To this
end, we simulated the policy for the instance of A =5 and T' = 5, to see whether the differences
between revenues would continue to hold. This problem instance was chosen since this was the
only case where the bid prices differed between the two models. We determined the 95% confidence
intervals around the expected revenue for both simulations. The CMIP resulted in an interval of
($6,959,$10,071), while the CDLP resulted in an interval of ($6,950,$10,088). As expected, the
results we observed for the CMIP and CDLP were very close to one another. Based on the results
of the simulation, we conclude that, in this set of problem instances, the CDLP and CMIP provide
similar solutions, and can be used interchangeably.

4.1. Implementing the Solution

One advantage of the CMIP formulation is the fact that both the policy and bid price controls
are useful for industry application. The solution to the CMIP indicates which policy should be
offered for each market during a particular time period. In the three-leg network problem instance,
the solution would instruct, for instance, to open the high fare class for itinerary ABC during time
periods 1, 2 and 3. Additionally, it would indicate to open the low fare class for itinerary AB during
time periods 1 and 2, while opening the high fare class for time period 3. A reservation system
could directly interpret this decision to open and close these particular fare classes, following the
guidance of the CMIP solution. The reservation system could then generate cut offs for certain fare
classes and calculate protection levels based on the airline’s current system, if necessary.
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An effective bid price control can be derived from the solution to this formulation as well.
Effectively, the lowest open fare class-itinerary on a leg, at optimality, reflects the marginal value
of that leg. In terms of right-hand side sensitivity, adding an additional seat to this leg would
increase the overall network revenue by the value of that itinerary as long as the optimal basis
of the integer solution does not change. This marginal value is analogous to a bid price that can
be used for inventory control. Since both the policy and bid price controls from the CMIP are
implementable, this model could be utilized for either reservation system, as well as a reservation
system that utilizes both solutions for pricing and capacity controls.

4.2. Comparison to Other Network RM Methods

Two common models currently being used in the industry include a stochastic network flow
formulation and the EMSR-b model, discussed in the literature review. The network flow formulation
represents one approach commonly used and is a popular O&D RM strategy. The network
formulation, as seen in Appendix A of Jacobs, Smith, and Johnson (2008), represents a stochastic
passenger flow model, solved using a Lagrangian relaxation approach with a sub-gradient algorithm.
The network flow formulation solves for the bid prices associated with each leg, and calculates the
protection limit for each fare class on each leg using Littlewood’s Rule.

The EMSR-b model represents a leg-based control strategy which estimates the bid prices using
protection limits based on Littlewood’s Rule. To account for the connecting traffic between O&D
pairs, the revenue of the connecting fare was prorated and allocated to each leg in the O&D. The
industry uses various versions of the EMSR-b and network formulation, making these industry
models a good technique to compare against.

The EMSR-b model and the network formulation were solved for multiple passenger demand
scenarios. The results show, using simulations of nine combinations of A\ and T, that the CMIP
performs better than both models. The CMIP outperforms the EMSR-b by 11.82% in mean revenue
over all of the nine cases given in Table 6. A standard z-test on the difference of each set of means
for the results shown in Table 6 illustrated that the differences in the expected revenue of all nine
combinations are statistically significant, with p-values less than 0.001.

In some situations the CMIP simulation resulted in larger confidence intervals, but this is due
to the highly segmented nature of fares. The difference between a sale and no sale is at least $300
(in the case of the lowest fare for legs AB and BC), creating a large gap between revenues among
simulations, yielding large standard deviations in relation to overall revenue. It is important to
note, however, that as a larger amount of demand enters the network, the width of the confidence
intervals for the CMIP reduces drastically; this is the exact opposite of the EMSR-b simulation,
where the confidence intervals become wider as more demand enters the network.

For the network formulation, the gains were slightly less since the network formulation tends
to perform better than the EMSR-b. The expected revenue showed an average increase of 9.60%
over the nine cases presented in Table 7. Similar to the statistical tests of the EMSR-b, these nine
cases show that the expected revenues are significantly different between the CMIP and network
formulation, with p-values less than 0.001. All three model simulations were run together, yet we
chose to display the ESMR-b and network formulation results separately for easier comparison.
Similar to the EMSR-b, the network formulation uses a segmented demand model for predicting
the expected number of passengers. This causes the network formulation to open up the lower fare
classes earlier than the CMIP does. Since the CMIP keeps the lower fare classes closed for a longer
period of time, a higher overall revenue is earned.

The results show a significant performance difference between the four tested network RM
models. Figure 2 illustrates the gains by each of the models as one increases the total number of
passengers introduced into the system over the entire time horizon. At the lowest level of passenger
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CMIP EMSR-b % Increase

A T | 95% Confidence Interval | 95% Confidence Interval | Over Mean
1 (%0, $1,414) (%0, $903) 10.8
1 5 ($228, $4,468) ($1,175, $3,191) 7.0
10 ($1,891, $7,213) (2,692, $5,430) 10.8
1 (5261, $4,465) ($1,175, $3,191) 7.7
5 5 (6,959, $10,071) ($3,915, $9,663) 20.3
10 ($10,229, $12,199) ($7,834, $11,488) 13.8
1 ($1,891, $7,221) (2,692, $5,430) 10.9
10 5 ($10,186, $12,220) ($5,164, $8,818) 13.8
10 ($13,174, $13,772) ($10,069, $13,799) 11.4

Table 6: Expected revenue confidence intervals by bid pricing controls simulation (CMIP vs. EMSR-b)

CMIP Network Formulation % Increase

A T | 95% Confidence Interval | 95% Confidence Interval | Over Mean
1 (%0, $1,414) (%0, $903) 10.8
1 5 ($228, $4,468) ($1,169, $3,203) 6.9
10 ($1,891, $7,213) ($2,659, $5,521) 10.2
1 (5261, $4,465) ($1,169, $3,203) 7.5
5 5 (6,959, $10,071) ($3,949, $9,971) 19.3
10 ($10,229, $12,199) ($8,771, $12,517) 5.1
1 ($1,891, $7,221) (2,659, $5,521) 10.2
10 5 ($10,186, $12,220) (98,791, $12,537) 5.0
10 ($13,174, $13,772) ($10,069, $13,799) 11.4

Table 7: Expected revenue confidence intervals by bid pricing controls simulation (CMIP vs. Network Formulation)

demand, all four models behave similarly: they sell to any passenger that shows up. At the highest
level of passenger demand, all the models again behave similarly: only sell to the highest paying
passengers. However, as one moves from zero demand to a higher demand, the models begin to
deviate from one another. The two dominating curves, the CMIP and CDLP, produces higher
revenues compared to the EMSR-b and the network formulation. In fact, as seen in Figure 2, the
CMIP and CDLP perform quite similarly.

5. Additional Examples

5.1. Small Network Instance

In addition to running the model on the three leg network seen above, we also tested it on
another network given in Liu and van Ryzin (2008). This network, depicted in Figure 3, is a small
22 product network, consisting of 7 legs.

The network contains a direct flight from A to B, with competition from A to B through the
hub, H. There are two flights from each of the direct legs between A, H, B, and C: an early flight
and a later flight. The network instance data, including all of the MNL choice parameters, can be
found in Tables 18 and 19 in the Appendix for the reader’s convenience. The small network instance
was ran for 1,000 time periods, with A; equal to 0.91 for each time period. This would represent a
total of 910 customers introduced into the network.
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Figure 2: Passenger demand to the network versus expected revenue under different RM methods

Figure 3: Small network instance - Adapted from Liu and van Ryzin (2008)

We ran our model, and compared the results to those given in Bront et al. (2009) for the example
in Liu and van Ryzin (2008), and saw that our model performed similarly to the CDLP. Across the
five tests, each for a different fraction of total network capacity, our model performed 9.0% better,
on average, than the CDLP, while still maintaining similar levels of network Load Factor (LF). The
LF, defined as the average across all legs of the ratio of seats taken to total capacity, represents
how many seats, on average, are consumed across the entire network. In addition to comparing it
to the CDLP, we also compared it to the model solved using the independent demand assumption
(referred to as the INDEP model) found in Bront et al. (2009), in which a deterministic linear
program is solved with demand values generated under the assumption that all of the products are
simultaneously open.

The first column of Table 8 indicates the percentage of the base capacity used for both the model
solution as well as the simulation. This value represents an increase or decrease in the amount of
capacity available, while maintaining the demand over the time horizon. The table includes the
expected revenues obtained by the CDLP and CMIP solutions, as well as the percent increase they
offer over the INDEP model. The table entries for CDLP and INDEP come from the simulation
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results reported in Bront et al. (2009). As the capacity in the network increases, the network load
factor should decrease, as the demand introduced into the network does not increase, although
the available space does. As seen in Table 8, the load factors decrease as the amount of capacity
increases for all of the models, as expected.

Percent of CMIP CDLP INDEP

Base Cap. | Revenue Inc. (%) LF (%) | Revenue Inc. (%) LF (%) | Revenue LF (%)
60 $224,114 30.0 98.5 $207,890 20.6 91.3 $172,362 97.7
80 $278,241 36.0 92.1 $261,264 27.7 85.6 $204,572 94.6
100 $297,752 31.7 83.6 $277,738 229 80.8 $226,002 87.7
120 $315,832 29.5 77.0 $282,842 16.0 71.6 $243,930 82.5
140 $318,153 22.8 70.2 $285,417 10.2 62.0 $259,039 77.0

Table 8: Expected revenues and percent increase over INDEP (Small Network instance)

5.2. Large Network Instance

We finally use a large network instance with realistic aspects to further test the performance of
the CMIP. The network structure, as well as the revenue values associated with each itinerary can
be found in Jacobs et al. (2008). This network contains 48 legs, each with an initial capacity of
200 seats, joining 10 cities (see Figure 4). Each leg represents a single flight. There are no parallel
flights available in this network. There are 178 itineraries, with three fare classes each, denoted as
Y, M, and Q, for the given itinerary. There are a total of 90 O&D markets, with markets containing
either one, two, or three possible paths between O&D. For a single time period, the CMIP model
has a total of 3,598 variables. Note that for this example, the CDLP would result in a total of
2534 _ 1 (or, about 5.6E160) variables. The total number of arrivals to the system was set to 9,750
for a single time period. A single time period was used to see a representation of a solution for an
entire booking horizon. The MNL values associated with each choice were arbitrarily generated, as
well as the individual arrival probabilities per market. These values can be found in three tables
(Tables 20, 21, and 22) given in the Appendix, and are separated by how many competing itineraries
existed between O&D, for easier classification. The preference vectors in Table 20 represent the
utility of the three fare classes, Y, M, and Q. The preference vectors in Table 21 represent the utility
of the three fare classes for each of the two itineraries available for that market. The first three
utility values refer to the Y, M, and Q fare classes of the first itinerary, while the last three utility
values refer to the Y, M, and Q fare classes of the second itinerary. Similarly, Table 22 displays the
preference vectors for the three itineraries with respect to the Y, M, and Q fare classes.

As indicated by the results given in Table 9, the time required to solve this model is quite
reasonable. As the capacity becomes more constraining, the model needs more time to find an
optimal solution. However, it can still be solved in a reasonable amount of time. Since the CDLP
is expected to have a total of 5.6E120 variables, we did not program the decomposition approach
presented in Bront et al. (2009), as it would have proved to be computationally prohibitive.

In addition to the revenue and network LF, the available seat mile (ASM) and revenue per
available seat mile (RASM) are also reported. The ASM is calculated by the number of seats
available on a leg, multiplied by the distance traveled by the flight on that leg, then summed for
all flight legs. The RASM is the total expected revenue divided by the ASM. This value is often
used in the industry, and although the values seen in the table come from a fabricated instance, the
RASMs are in-line with what is seen in industry practice.
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Figure 4: Large network instance, adapted from Jacobs et al. (2008)

Percent of CMIP
Base Capacity | Revenue LF (%) ASM RASM Elapsed Time (sec.)
60 $1,018,043 82.2 6,380,160  $0.16 142.87
80 $1,146,655 78.5 8,506,880  $0.13 66.04
100 $1,231,055 70.6 10,633,600  $0.12 3.07
120 $1,283,682 62.6 12,760,320  $0.10 3.65
140 $1,322,589 55.2 14,887,040  $0.09 1.59

Table 9: Expected revenues for the large network instance

5.8. Computational Complexity

Many of the existing RM approaches, such as the dynamic program proposed in Talluri and
van Ryzin (2004) generate an exponential number of solutions by explicitly combining market
policy strategies together across the network. This is problematic for industry use, as networks and
fare class buckets have grown to create many itineraries. One example of this complexity issue is
apparent in the CDLP’s solution set, S. Since set S contains all the fare class and O&D controls for
the network, S is dependent on the network definition, including prices and control strategies. For
example, a small three node, four itinerary, two fare class network yields 255 decision variables for
the CDLP formulation. However, if we increase the complexity of the network to four nodes, seven
itineraries, and keep the two fare classes, the model has a total of 16,383 decision variables. This
number continues to grow exponentially when any parameter of the network is increased, which can
be seen in Table 10. This table illustrates the growth in complexity of the CDLP versus that of the
CMIP for the previous examples. As one can see, the CMIP doesn’t increase in size as fast, which
would allow for consideration of being tractable for industry use.

Number of | Number of Variables
Network Instance Products | CMIP CDLP
Three Leg Example 8 24 255
Small Network Example 22 116 4.2 x 106
Large Network Example 534 3598 5.6 x 10160

Table 10: Variable complexity of CMIP and CDLP for a single time period
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6. Dynamic Pricing

In traditional choice-based revenue management the attributes, such as price, used to generate
the utilities are selected ahead of time and assumed to be static. Although the customer only
sees one price for a ticket, the airline has a range of prices for each type of ticket, thus traditional
choice-based revenue management models fall short of modeling the true environment of customer
purchasing behavior by excluding these price ranges and assuming a static price is available. In this
section, we introduce an extension to the work in the previous sections that models the environment
in which customers are purchasing tickets by incorporating the structure of an MNL directly into the
mathematical model. With this approach we are able to determine which tickets to offer a market as
well as an optimal price for the preferences of that market. The added flexibility allows the model,
the Price-dynamic Choice-based Mixed Integer Program (PCMIP), to yield higher revenue than the
static counterpart, and eliminates the two-step process of offering tickets followed by pricing them.
This creates a feasible model for industry use since it capitalizes on the complexity reduction of the
CMIP while incorporating complex pricing decisions.

6.1. Model Formulation

To introduce pricing into the Choice-based Mixed Integer Program (CMIP) formulation we must
go back to the formulation of the MNL itself. MNL models determine the probability of selecting a
particular option out of a group of alternative options by a ratio of predicted values of a regression
model of the form
enBi

S A )

In this equation ¥, is a dependent variable referencing person n, j represents an option indexed
1 to J, and z, is a vector of preferences unique to person n. P(y, = j|z,) is the probability, given
the preferences of n, that person n selects option j. The s for this MNL model are determined
from a regression equation containing the attributes associated with the preferences of the sample
population. The previous chapter simplified this equation by converting e®»% into utilities, uy,
provided in the data sets. In revenue management this regression model is characterized by many
attributes including price, time of day, path from origin to destination, number of connections, and
others. Different segments of an origin-destination market, such as business and leisure, would
potentially have different sensitivities to these preferences but could easily be considered in a single
MNL model.

Under this context, we can incorporate pricing into the CMIP by characterizing a regression
equation as

P(yn = ]|xn) =

gt = Yiefr + widp, (8)

where ay; is the response for ticket k£ in time unit ¢, Y, is the price for ticket k& in time unit ¢, G is
the sensitivity to price for ticket k in the customer population. wy is the vector associated with the
attributes of ticket k and d is the sensitivity (fitted regression values) mapping for ticket k. In a
standard MINL format, we then know that the utilities of a particular ticket, k, would be

Uy = ekt (9)

where ug; would have the same interpretation as the utilities seen in the previous sections.

Since the utilities have been determined directly from a regression equation, we can evaluate
the probability a purchase is made. Given an origin-destination market j we can denote a super
set of all possible ticket offerings as I;, with ¢ € I; representing a set of all available tickets for
this origin-destination. Kj; then, denotes the set of tickets available to purchase, where Kj; C I;.
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We can then calculate the probability a customer from market j will purchase a ticket in offer set
Kj; C I; in time period ¢, Pj;, as
D keK ;i Ukt

Py =
Jit )
Zk)EKji Ukt + Uj

(10)

where v; is the no-purchase utility for origin-destination market j. Likewise, we can then calculate
the probability a customer purchased ticket k € Kj;, given that a purchase was made, as

Ukt -1
= Pt 11
Qkﬂ]l ZkeKﬁ- Upg + jit ( )

With these values we can now extend the model introduced previously, the Choice-based Mixed
Integer Program, to develop the Price-dynamic Choice-based Mized Integer Program (PCMIP):

Maximize Z Yt Z )\] Z ]Djit Z ththLN (12)
teT  jed 1K Cl; kEKJ‘i
Subject to:
SN Y P Y QujiAr < a, for all I € L, (13)
teT jeJ i:Kjing kGKji
> X <1, forall j€ JteT, (14)
K Cl;
gy = eYktPrtwrde for all j € J,k € Kji, (15)
2kek,,; Ukt . .
Pjit:W for all j € J,i: Ky C I, (16)
— -1 ; P
LB, <Y < UBy forall j € J k € Kji,t eT, (18)
Xjit € {0,1}, for all j €Ji:K;; CIjteT. (19)

There are two decision variables for the PCMIP. X;; represents the binary decision to select
offer set Kj; for origin-destination market j in time unit ¢. Y}, represents the price for ticket k in
time unit ¢, where & € Kj;. The previous decision variable in the CMIP, Z;;, is no longer needed as
we are setting prices directly. Previously, Z;;; was used to generate complementary slackness for
the capacity constraint in an effort to utilize a bid price. Since Yj; represents the price to sell a
ticket for, the model can manipulate Y}, directly to reach capacity as oppose to setting Z;;;. With
these decision variables the PCMIP will select an offer set as well as assign the prices to each ticket
available in that offer set.

The objective function (12) is similar to that of the CMIP, except Yj; replaces the revenue
parameter, Ry, since price is now a decision. Constraint set (13) prevents the expected demand from
exceeding the capacity on a leg, ¢;. Constraint set (14) forces the model to select only one ticket
offer set of the super set I;. Constraint set (15) generates the utilities for ticket & while constraint
sets (16) and (17) define Pj;; and Qpy;; based on equations 10 and 11, respectively. Constraint set
(18) establishes lower and upper bounds on the pricing decision for each ticket, while constraint set
(19) defines the binary restriction for Xj;.

The PCMIP is unique when compared to other choice-based revenue management models
previously developed. First, it determines the ticket offer set at any point in time while simultaneously
setting ticket prices. In previous revenue management models prices are assumed to be static and
subsequent algorithms adjust prices as necessary based on capacity, given a solution from the
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revenue management model. The PCMIP eliminates the two-step optimization process by combining
the decisions into a single, concise model. Secondly, the PCMIP reduces the number of offer sets
to consider, when compared to other choice-based revenue management models, by separating
origin-destination markets that have no interaction with other origin-destination markets, much
like the CMIP does. Although airline networks are large due to a highly connected network, the
PCMIP separates the problem into independently solvable offer sets making it manageable for the
airline industry to implement.

6.2. Problem Instances and Results

Two problem instances were constructed to illustrate the effectiveness of optimizing price along
with availability. These problem instances were solved with both the PCMIP and CMIP, representing
the cases of dynamic-pricing and static-pricing, respectively. The network for the problem instances,
seen in Figure 5, consisted of a single O&D pair with three flight options representing early, mid-day,
and late flights, with their capacities presented in parentheses. This network was adapted from
Bront et al. (2009) and provided a simple network to analyze the impact pricing could have on
revenue.

Table 11: Products and fare classes for
parallel problem instance (Bront et al.,
2009)

’ Product \ Leg \ Class \ Fare ‘

1 1 Low | $400

2 1 High | $800

3 2 Low | $500

4 2 High | $1000

Leg 3 (40) 5 3 Low | $300

Figure 5: Parallel problem instance (Bront et al., 2009) 6 3 High | $600

Two regression equations were developed for this network to highlight the advantages of the
PCMIP. The first regression equation only accounted for sensitivity to price, setting 51 = —0.002,
yielding a regression equation of the form ay; = —0.002Y});. The second regression equation took
a more realistic approach, incorporating both price and time of day (ToD) preference, yielding a
regression equation of the form ag; = —0.002Y%; + ABy + 0.5ABs, where AB; equals 1 if the leg
1 is selected and 0 otherwise. The two problem instances for the parallel network were solved by
both models (PCMIP and CMIP) for five time periods (7" = 5), with an increasing arrival rate
for subsequent time periods, where v = (6,12, 24,48, 96), and their solutions were simulated. The
bounds on the prices within the PCMIP were generated by finding the midpoint between the fare
classes in Table 11. For instance, Leg 1’s High fare class has a lower bound of $600 and no upper
bound, whereas Leg 1’s Low fare class has a lower bound of $0 and an upper bound of $599.99.

The first problem instance, with price being the only factor, converged to the solution shown in
Table 12 for each of the models. The prices of each ticket on each leg are given, as these represent
both the availability of a ticket and the price at which it’s sold. The PCMIP is able to select its
own pricing policy, whereas the CMIP must select the prices displayed in Table 11. A fare of $0
represent a closed option, and thus no purchase can be made on that leg during that time period.

The simulation of the solutions from Tables 12 and 13 resulted in the PCMIP consistently
outperforming the CMIP, as displayed in Table 14 and Figure 6. The PCMIP yielded a 6.4% increase
in revenue overall, while maintaining a similar load factor (PCMIP 78% versus CMIP 82%) and
traffic. Since the PCMIP is free to select price, and thus less constrained than the CMIP, the higher

19



Table 12: PCMIP Solution - No ToD pref. Table 13: CMIP Solution - No ToD pref.

é 1::;% Legl | Leg2 | Leg3 fi lrlf;ed Legl | Leg2 | Leg3
1 [ $945.24 | $945.24 | $300.00 1 $0.00 | $1000.00 | $600.00
2 | $945.24 | $945.24 | $800.00 2 $0.00 | $1000.00 | $0.00
3 | $945.24 | $945.24 | $300.00 3 | $800.00 | $500.00 | $0.00
4 [ $945.24 | $945.24 | $800.00 4 | $800.00 | $1000.00 | $600.00
5 | $945.24 | $945.24 | $800.00 5 | $300.00 | $1000.00 | $600.00

revenue gains were expected, and the PCMIP dominated the CMIP in cumulative revenue over the
five time periods.

Cumulative Revenue per Time Period

Table 14: Revenue and traffic per time period - No ToD $50000.00
pref. $80,000.00
Time PCMIP CMIP %uu:uw m
Period | Rev. [ Traffic | Rev. [ Traffic | 000
1 $2,627 | 2.96 [ $1,997 [ 2.76 oot
2 $4,896 5.52 $2,346 2.35 ;mim';\
3 $10,236 11.53 $7,459 12.30 oo i 1
4 $20,883 23.55 $19,623 26.24 e — — o
5 $41,375 46.54 $38,902 51.05

| Total | $80,016 | 90.10 [ $70,327 [ 94.70 |

Figure 6: Cumulative revenue per time period - No ToD
pref.

The second problem instance for this network, where price and time of day was considered,
yielded a considerably more dynamic solution, as seen in Tables 15 and 16. Now that price isn’t
the only factor to consider, the PCMIP must balance the sensitivity to price along with the time
of day preferences, resulting in a more complex pricing structure. These results were simulated,
and the PCMIP outperformed the CMIP by 21%, while managing to achieve a higher load factor
of 94%, versus that of the CMIP’s 86% (see Table 17 and Figure 7). It is worth noting that the
“bump” in the cumulative revenue (Figure 7) at time period 3 stems from the difference in solutions.
The PCMIP favors shutting down Legs 1 and 2 early in the time horizon in anticipation of future
demand, whereas the CMIP only closes Leg 1. Ultimately, though, the PCMIP’s solution yields
higher revenue and dominates the CMIP solution in cumulative revenue for all time periods, similar
to when price was the only consideration.

Although these problem instances are small in size, they highlight the importance price has on the
decision of availability. Setting only availability, much in the way traditional revenue management
models approach the problem, fails to account for the relationship between passenger preference
and pricing. The PCMIP provides an alternative solution methodology to a two-step revenue
management /pricing system, incorporating choice-based demand and passenger preference in a
manageable model.

7. Conclusions and Future Work

The proposed CMIP and PCMIP formulations use an MNL model to explicitly model the
impact of network-wide offerings and passenger preference on the probability of purchase to better
reflect customer behavior. Using problem instances of varying size, we have shown that CMIP

20



Table 15: PCMIP Solution - With ToD pref. Table 16: CMIP Solution - With ToD pref.

Time Time
Period Leg 1 Leg 2 Leg 3 Period Leg 1 Leg 2 Leg 3
1 $1000.00 | $608.07 $0.00 1 $800.00 $500.00 $0.00
2 $1000.00 | $588.62 | $800.00 2 $0.00 $500.00 $600.00
3 $0.00 $700.00 $0.00 3 $0.00 $1000.00 | $600.00
4 $0.00 $666.42 | $800.00 4 $0.00 $1000.00 $0.00
5 $1000.00 | $800.00 | $800.00 5 $800.00 $500.00 $600.00
Cumulative Revenue per Time Period
Table 17: Revenue per time period - With ToD pref. SQZZZZZZZ
$80,000.00
Time PCMIP CMIP $70,000.00
Period Rev. | Traffic Rev. | Traffic z“'“““
1 $2,782 3.36 $2,601 3.83 $40,000.00
2 $6,491 8.08 $3,884 6.97 53000000

$20,000.00

3 36,816 | 9.74 | $8.809 | 12.85 e
4 [ $22,001 | 29.70 | $10,059 | 10.06 :
5 | $53,266 | 60.65 | $43,895 | 68.09

Total | $91,356 | 111.52 | $69,248 [ 101.79

PCMIP == = Static

Figure 7: Cumulative revenue per time period - With ToD
pref.

outperforms both the EMSR-b and a basic network formulation, as well as the benchmark CDLP,
which utilizes the same MNL model to develop its probability of purchase but yields a solution
that is somewhat difficult to decipher and implement. The PCMIP introduces more flexibility
to the problem of revenue management by allowing the model to dynamically set prices while
managing ticket availability. The PCMIP consistently outperformed the CMIP, as expected with a
less constrained, more flexible model.

From a pragmatic perspective, the CMIP and PCMIP approaches build on the advantages of
previous models by addressing passenger choice in a computationally more efficient manner. Future
work includes full scale tests of these approaches and calibration of the passenger choice model
needed to drive the optimization. Other areas include expanding the model to handle bookings of
multiple passengers at once, and time dependent demand utilities and pricing sensitivities.

With the results from the examples and the possibility of industry specific extensions, the CMIP
and PCMIP look promising for future research. These models could improve on the methods currently
being used by leading airline companies today as well as be the groundwork for further development
in the area of RM. Utilizing choice modeling and mathematical programming, the choice-based
mixed integer program and price-dynamic choice-based mixed integer program successfully optimizes
the network RM problem for the airline industry. Further development of this model could assist in
changing the way the industry solves their network RM problems.
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Appendix

] Product \ Legs \ Class \ Fare \ Product \ Legs \ Class \ Fare

1 1 H | 1000 | 12 1 L | 500
2 2 H | 400 13 2 L | 200
3 3 H | 400 14 3 L | 200
4 4 H | 300 15 4 L | 150
5 5 H | 300 16 5 L | 150
6 6 H | 500 17 6 L | 250
7 7 H | 500 18 7 L | 250
8 {24} | H | 600 19 {24} | L | 300
9 {35} | H | 600 20 {35} L | 300
10 | {26} | H | 700 21 {26} | L | 350
11 {37} | H | 700 22 | {37} | L | 350

Table 18: Product definitions for the Small Network instance - Adapted from Liu and van Ryzin (2008)

’ Segment \ O-D \ Consideration Set \ Preference Vector \ Utility of No Purchase \ At ‘

1 A-B | {189,12,19,20} (10,8,8,6,4,4) 1 0.08
2 A-B | {1,89,12,19,20} (1,2,2,8,10,10) 5 0.20
3 A-H {2,3,13,14} (10,10,5,5) 1 0.05
4 A-H {2,3,13,14} (2,2,10,10) 5 0.20
5 H-B {4,5,15,16} (10,10,5,5) 1 0.10
6 H-B {4,5,15,16} (2,2,10,8) 5 0.15
7 H-C {6,7,17,18} (10,8,5,5) 1 0.02
8 H-C {6,7,17,18} (2,2,10,8) 5 0.05
9 A-C | {10,11,21,22} (10,8,5,5) 1 0.02
10 A-C | {10,11,21,22} (2,2,10,10) 5 0.04

Table 19: Segment definitions for the Small Network instance - Adapted from Liu and van Ryzin (2008)
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Single Itinerary Markets

Market Itinerary Arrival Rate | Preference Vector | No Purchase Utility
SATBOS | SATDFW1DFWBOS1 0.002 (1,2,3) 4
SATSEA | SATDFWI1DFWSEA1 0.005 (2,2,4) 5
SEAABQ | SEADFW1DFWABQ1 0.002 (3,3,3) 8
SEAAUS | SEADFW1DFWAUS1 0.002 (4, 4,5) 10
SEADCA | SEADFW1DFWDCA1 0.005 (3,5,7) 11
SEAJFK SEADFW1DFWIJFK1 0.007 (1,2,3) 8
SEASAT | SEADFW1DFWSAT1 0.002 (2,3,8) 10
SEASFO | SEADFW1DFWSFO1 0.002 (2,1,5) 9
SFOABQ | SFODFW1DFWABQ1 0.002 (3,4,8) 9
SFOAUS | SFODFW1DFWAUS1 0.002 (2,2,7) 9
SFODCA | SFODFW1DFWDCA1 0.002 (1,1, 4) 11
SFOORD | SFODFW1DFWORD1 0.005 (1,2,3) 5
SFOSAT | SFODFW1DFWSAT1 0.005 (1,1,2) 4

Table 20: Consideration sets and utility values for the single itineraries in the large network example
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Double Itinerary Markets
Market Itinerary Arrival Rate | Preference Vector | No Purchase Utility
ABQAUS | ABQDFW1DFWAUS1 | ABQDFW2DFWAUS2 | 0.037 | 0.012 (1,2,3,4,5,6) 7
ABQBOS | ABQDFW1DFWBOS1 | ABQDFW2DFWBOS2 | 0.002 | 0.049 (2,3,4,5,6,7) 8
ABQDCA | ABQDFW1DFWDCA1 | ABQDFW2DFWDCA2 | 0.002 | 0.007 (1,3,4,5,5,6) 9
ABQDFW ABQDFW1 ABQDFW2 0.005 | 0.005 (2,2,3,3,4,5) 7
ABQJFK ABQDFW1DFWIJFK1 ABQDFW2DFWIJFK2 | 0.01 | 0.01 (1,1,2,3,4,7) 9
ABQORD | ABQDFW1DFWORD1 | ABQDFW2DFWORD?2 | 0.012 [ 0.002| (2,2,3,5,10, 11) 12
ABQSAT | ABQDFWI1DFWSAT1 ABQDFW2DFWSAT2 | 0.002 | 0.002 (1,1,2,2,3,3) 4
ABQSEA | ABQDFWI1DFWSEA1 ABQDFW2DFWSEA2 | 0.005 | 0.007 (1,1,1,2,4,5) 9
ABQSFO | ABQDFW1DFWSFO1 | ABQDFW2DFWSFO2 | 0.002 | 0.005 (1,3,3,4,5,6) 6
AUSABQ | AUSDFW1DFWABQ1 | AUSDFW2DFWABQ2 | 0.007 | 0.002 (1,1,2,3,4,5) 5
AUSBOS | AUSDFW1DFWBOS1 | AUSDFW2DFWBOS2 | 0.002 | 0.002 (1,2,3,4,5,6) 7
AUSDCA | AUSDFW1DFWDCA1 | AUSDFW2DFWDCA2 | 0.002 | 0.005 (2,3,4,5,6,7) 8
AUSDFW AUSDFW1 AUSDFW?2 0.005| 0.01 (1,3,4,5,5,6) 9
AUSJFK AUSDFW1DFWIJFK1 AUSDFW2DFWJFK2 | 0.005 | 0.005 (2,2,3,3,4,5) 7
AUSORD | AUSDFW1DFWORD1 | AUSDFW2DFWORD2 | 0.002 | 0.002 (1,1,2,3,4,7) 9
AUSSAT | AUSDFWI1DFWSAT1 AUSDFW2DFWSAT2 | 0.01 | 0.005| (2,2,3,5,10,11) 12
AUSSEA | AUSDFWI1DFWSEA1 AUSDFW2DFWSEA2 | 0.002 | 0.005 (1,1,2,2,3,3) 4
AUSSFO | AUSDFW1DFWSFO1 AUSDFW2DFWSFO2 | 0.007 | 0.002 (1,1,1,2,4,5) 9
BOSABQ | BOSDFW1DFWABQ1 | BOSDFW2DFWABQ2 | 0.005 | 0.002 (1,3,3,4,5,6) 6
BOSAUS | BOSDFW1DFWAUS1 | BOSDFW2DFWAUS2 | 0.002 | 0.002 (1,1,2,3,4,5) 5
BOSDFW BOSDFW1 BOSDFW2 0.002 | 0.005 (1,2,3,4,5,6) 6
BOSJFK BOSDFW1DFWIJFK1 BOSDFW2DFWIJFK2 0.01 | 0.002 (1,3,4,5,5, 6) 9
BOSSAT BOSDFW1DFWSAT1 BOSDFW2DFWSAT2 | 0.002 | 0.002 (1,2,3,4,4,5) 5
BOSSEA BOSDFW1DFWSEA1 BOSDFW2DFWSEA2 | 0.005 | 0.002 (1,1,2,2,3,4) 4
DCAABQ | DCADFW1DFWABQ1 | DCADFW2DFWABQ2 | 0.002 | 0.005 (1,3,3,4,5,6) 7
DCAAUS | DCADFW1DFWAUS1 | DCADFW2DFWAUS2 | 0.002 | 0.01 (1,1,2,2,3,3) 5
DCAORD | DCADFW1DFWORD1 | DCADFW2DFWORD?2 | 0.002 | 0.002 (1,1,4,4,6,7) 8
DCASAT | DCADFW1DFWSAT1 DCADFW2DFWSAT2 | 0.005 | 0.002 (1,2,3,4,4,5) 6
DCASEA | DCADFW1DFWSEA1 DCADFW2DFWSEA2 | 0.002 | 0.002 (1,1,3,3,4,4) 5
DCASFO | DCADFW1DFWSFO1 | DCADFW2DFWSFO2 | 0.005 | 0.002 (1,1,1,2,4,5) 7
DFWABQ DFWABQ1 DFWABQ2 0.002 | 0.005 (1,2,3,3,4,5) 8
DFWAUS DFWAUS1 DFWAUS2 0.002 | 0.002 (1,4,4,5,8,9) 10
DFWBOS DFWBOS1 DFWBOS2 0.005 | 0.005 (2,2,4,5,6,6) 9
DFWIJFK DFWIJFK1 DFWIJFK2 0.002 | 0.012 (1,1,3,4,4,9) 9
DFWORD DFWORD1 DFWORD2 0.005| 0.002 (1,1,1,2,3,4) 5
DFWSAT DFWSAT1 DFWSAT2 0.002 | 0.007 (1,2,2,3,3,4) 5
DFWSEA DFWSEA1 DFWSEA2 0.005| 0.007 (1,2,2,3,6,6) 10
DFWSFO DFWSFO1 DFWSFO2 0.01 | 0.005 (1,3,3,5,6,6) 9
JFKABQ | JFKDFW1DFWABQ1 JFKDFW2DFWABQ2 | 0.002 | 0.005 (1,1,3,4,5,5) 9
JFKAUS | JFKDFW1DFWAUS1 JFKDFW2DFWAUS2 | 0.005| 0.01 (1,3,4,7,8,9) 10
JFKBOS | JFKDFW1DFWBOS1 JFKDFW2DFWBOS2 | 0.002 | 0.005 (2,2,5,6,6,7) 9
JFKORD JFKDFW1DFWORD1 JFKDFW2DFWORD2 | 0.005 | 0.005 (1,2,3,3,4,5) 7
JFKSAT JFKDFW1DFWSAT1 JFKDFW2DFWSAT2 | 0.002 | 0.005 (1,2,3,4,5,5) 6
JFKSEA JFKDFW1DFWSEA1 JFKDFW2DFWSEA2 | 0.005| 0.01 (1,2,2,3,4,5) 5
ORDABQ | ORDDFW1DFWABQ1 | ORDDFW2DFWABQ2 | 0.002 | 0.005 (1,2,5,5,8,9) 10
ORDAUS | ORDDFW1DFWAUS1 | ORDDFW2DFWAUS2 | 0.005 | 0.01 (1,1,2,2,3,3) 4
ORDBOS ORDBOS1 ORDDFW1DFWBOS1 | 0.01 | 0.012 (1,1,5,5,8,9) 10
ORDDCA | ORDDFW1DFWDCA1 | ORDDFW2DFWDCA2 | 0.002 | 0.005 (2,2,4,4,6, 6) 8
ORDDFW ORDDFW1 ORDDFW2 0.002 | 0.01 (1,1,3,4,5,7) 8
ORDJFK | ORDDFW1DFWJFK1 | ORDDFW2DFWJFK2 |[0.007 | 0.005 (1,4,5,5,6,6) 10
ORDSAT | ORDDFW1DFWSAT1 | ORDDFW2DFWSAT2 |0.002|0.005| (1,4,4,6,10,11) 12
ORDSEA | ORDDFW1DFWSEA1 ORDSEA1 0.01 | 0.005 (1,4,3,8,5,10) 11
ORDSFO | ORDDFW1DFWSFO1 | ORDDFW2DFWSFO2 | 0.01 | 0.002 (1,2,2,3,4,4) 5
SATABQ | SATDFW1DFWABQ1 SATDFW2DFWABQ2 | 0.005 | 0.002 (2,2,4,5,5,6) 9
SATAUS | SATDFWI1DFWAUS1 SATDFW2DFWAUS2 | 0.002| 0.01 (1,4,4,9,10,11) 15
SATDCA | SATDFWI1DFWDCA1 SATDFW2DFWDCA2 | 0.005| 0.007 (2,3,3,4,4,9) 9
SATDFW SATDFW1 SATDFW2 0.002 | 0.005 (1,1,2,2,3,3) 4
SATIFK SATDFW1DFWIJFK1 SATDFW2DFWIJFK2 | 0.007 | 0.002 (1,1,4,4,6,7) 8
SATORD | SATDFW1DFWORD1 | SATDFW2DFWORD2 | 0.002|0.002| (3,4,38,8, 10, 10) 15
SATSFO | SATDFWI1DFWSFO1 | SATDFW2DFWSFO2 | 0.005| 0.01 (1,1,4,4,9,9) 10
SEABOS | SEADFWI1DFWBOS1 | SEADFW2DFWBOS2 | 0.002 | 0.005 (1,2,2,5,5,9) 10
SEADFW SEADFW1 SEADFW2 0.002| 0.01 (1,4,4,5,9,9) 4
SEAORD SEAORD1 SEADFW1DFWORD1 | 0.002 | 0.002 (1,1,2,2,4,4) 3
SFODFW SFODFW1 SFODFW2 0.002 | 0.005 (1,1,3,3,4,5) 2
SFOJFK SFODFW1DFWIJFK1 SFOJFK1 0.005| 0.002 (1,1,4,5,6,7) 10
SFOSEA | SFODFW1DFWSEA1 | SFODFW2DFWSEA2 | 0.002 | 0.002 (1,2,3,4,5,6) 7

Table 21: Consideration sets and utility values for the double itineraries in the large network example
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Triple Itinerary Markets

Market Itinerary Arrival Rate Preference Vector No Purchase Utility
BOSDCA BOSDCA1 BOSDFW1DFWDCA1 | BOSDFW2DFWDCA2 | 0.002 | 0.005 | 0.002 (1,1,2,2,3,3,4,4,5) 7
BOSORD BOSORD1 BOSDFW1DFWORD1 | BOSDFW2DFWORD2 | 0.005 | 0.002 [ 0.012 | (1,2,2,3,4,5,6,6,7) 7
BOSSFO | BOSDFW1DFWSFO1 | BOSDFW2DFWSFO2 BOSSFO1 0.002 | 0.002 | 0.005 | (1,2,4,4,7,8,9,9,10) 11
DCABOS | DCADFW1DFWBOS1 | DCADFW2DFWBOS2 DCABOS1 0.024 | 0.027 | 0.049 | (1,1,2,4,4,5,6,6,9) 9
DCADFW DCADFW1 DCADFW2 DCABOS1BOSDFW2 | 0.002 | 0.005 | 0.01 | (2,2,2,3,4,6,7,8,9) 9
DCAJFK | DCADFWIDFWIFK1 | DCADFW2DFWIFK2 DCAJFK1 0.005 | 0.005 | 0.002 | (1,2,3,4,4,5,6,7,8) 8
DFWDCA DFWDCA1 DFWDCA2 DFWBOS1BOSDCA1 | 0.002 | 0.01 | 0.017 | (1,3,3,6,6,7,8,9,10) 12
JFKDCA | JFKDFW1DFWDCA1 JFKDFW2DFWDCA2 JFKDCA1 0.005 | 0.005 | 0.002 (1,2,3,4,4,5,6,7,8) 8
JFKDFW JFKDFW1 JFKDFW?2 JFKDCA1DCADFW2 | 0.002 | 0.005 | 0.002 | (1,2,3,4,4,5,7,7,8) 8
JFKSFO JFKDFW1DFWSFO1 JFKDFW2DFWSFO2 JFKSFO1 0.002 | 0.005 | 0.002 (1,3,3,4,4,6,7,8,9) 9
SFOBOS SFOBOS1 SFODFW1DFWBOS1 | SFODFW2DFWBOS2 | 0.002 | 0.005 | 0.007 | (1,1,1,5,5,5,8,8,8) 3

Table 22: Consideration sets and utility values for the triple itineraries in the large network example
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