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Abstract 

We propose, optimize and validate a methodological framework for estimating the extent of the crew-

propagated delays and disruptions (CPDD). We identify the factors that influence the extent of the CPDD, 

and incorporate them into a robust crew scheduling model. We develop a fast heuristic approach for 

solving the inverse of this robust crew scheduling problem to generate crew schedules that are similar to 

real-world crew scheduling samples. We develop a sequence of exact and heuristic techniques to quickly 

solve the forward problem within a small optimality gap for network sizes that are among the largest in 

robust crew scheduling literature. Computational results using four large real-world airline networks 

demonstrate that the crew schedules produced by our approach generate propagation patterns similar 

to those observed in the real world. Extensive out-of-sample validation tests indicate that the parameters 

calibrated for one network perform reasonably well for other networks. We provide new insights into the 

perceived tradeoff between planned costs and delays costs as reflected by actual airline crew schedules. 

Finally, we present a general approach to estimate the CPDD for any given network using our 

methodological framework under a variety of data availability scenarios. 
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1 Motivation 

Flight delays and disruptions cost tens of billions of dollars annually to the world economy. The total cost 

of flight delays in the U.S. in 2007 was especially large, estimated to be approximately $31.2 billion (Ball 

et al., 2010). Over the first half of this decade, that is, from January 1st 2011 to December 31st 2015, only 

79.21% of the domestic flights in the U.S. had a delay of 15 minutes or less (BTS, 2016). During the same 

period, 1.68% of the U.S. domestic flights were cancelled.  

Determining the causes of flight delays and disruptions has been a topic of considerable interest among 

researchers and policymakers: The U.S. Department of Transportation (DOT) classifies flight delays into 

five main categories. They are Air Carrier Delays, Late Arriving Aircraft Delays, National Aviation System 

Delays, Extreme Weather Delays, and Security Delays. Between Jan 1st 2011 and Dec 31st 2015, Air Carrier 

Delays (defined as those within the control of the airline, such as those due to maintenance or crew 

problems, aircraft cleaning, baggage loading, fueling, etc.) accounted for nearly 32% of all flight delays, 

while another 34% were attributed to Late Arriving Aircraft Delays (those due to late arrival of the previous 

flights using the same aircraft) and about 31% were classified as the National Aviation System Delays 

(defined as those due to non-extreme weather conditions, airport operations, heavy traffic volume, air 

traffic control, etc.) (BTS, 2016). However, this public data lacks a dedicated category for flight delays due 

to the propagation of upstream crew delays and disruptions. Delayed or disrupted flights may generate 

delays and disruptions to subsequent flights because the crew for those flights is delayed, out of position, 

or unable to operate the scheduled flights without violating government regulations or collective 

bargaining agreements (CBAs). Presently, these delays (henceforth called as the Crew-Propagated Delays 

and Disruptions in this paper or CPDD for short) are considered to be a subset of the rather broad category 

of Air Carrier Delays. Accurate estimation of the CPDD is critical not only as a step toward fully 
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understanding the aviation system performance, but also for informing government policy and air carrier 

decisions related to airline crew scheduling.  

There is yet another motivation for conducting this research. Public data sources lack information about 

not only the CPDD, but also the crew itineraries themselves. A prior study by Barnhart, Fearing and Vaze 

(2014) used a statistical approach to estimate passenger itineraries, passenger delays and disruptions. But 

similar estimates of crew itineraries or even a validated methodology to come up with such estimates is 

not available. Apart from aiding in future research studies such as those mentioned above, such estimates 

of crew itineraries would also be beneficial for assessing the full impact of any delay mitigation strategy 

being considered by airlines and/or government. In this paper, we develop a crew itinerary estimation 

methodology to generate a database of estimated crew itineraries that will enable accurate estimation of 

the CPDD consistent with their real-world values. 

Note that we do not attempt to develop an approach to generate crew itineraries that are identical to the 

real-world airline crew itineraries in every possible aspect. Such objective would not only be extremely 

difficult to attain, but also likely cause overfitting issues based on the limited confidential data samples 

which we use for the estimation purposes. Instead, we develop a robust process to generate crew 

itineraries that are similar to the real-world airline crew itineraries in their potential for causing the crew-

propagated delays and disruptions. There are possibly other, non-delay related, aspects of crew itineraries 

that could be of relevance for other purposes. However, the focus of this paper is to ensure that our 

process is accurate and stable in terms of the CPDD estimation. 

Finally, we note that the present research project was originally motivated and funded by an aircraft delay 

modeling limitation faced by the U.S. Federal Aviation Administration’s (FAA) Office of Performance 

Analysis. The FAA analyzes and forecasts, on a monthly basis, aircraft delays at the nation’s major airports, 

with the objective of identifying airports with significant potential for delays months in advance, so that 
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appropriate actions may be taken to prevent or mitigate such delays. A discrete events simulation 

platform developed by the FAA for this purpose models aircraft-based delay propagation using public data 

on aircraft itineraries (BTS, 2016), but does not account for crew-based propagation effects due to the 

lack of crew itinerary data. This is believed to contribute to an underestimation of the propagated delays, 

and served as the motivation for conducting the research work presented in this paper. 

1.1 Crew Pairing Optimization Problem 

A crew pairing consists of a sequence of duties, where a duty is defined as the set of tasks to be performed 

by a crew member during a given day. Duties are connected by rest periods. Each duty is made up of a set 

of consecutive flights with some gaps between them. These gaps are called sit times. A pairing should 

begin and end at a crew base which is usually the domicile of a crew member. Both pairings and duties 

are subject to various regulations and contractual restrictions. Typically, these include the following. 

 The total flying time within a duty cannot exceed an upper bound. There is also an upper bound on 

the total elapsed time within a duty. 

 There is a lower bound on the sit time which guarantees that the crew has enough time to connect 

between two consecutive flights within a duty. 

 The rest time between duties should be greater than or equal to a minimum rest time which ensures 

that the crew is sufficiently rested between duties. 

 There is typically an upper limit on the number of duties within a pairing. 

In addition to these rules, even when ignoring the operational cost considerations, crew pairings also have 

a highly non-linear pay structure. Note that the crew pay is commonly expressed in the units of hours of 

crew flying, which we will use throughout this paper. For a typical North American airline, the planned 

cost of a pairing 𝑝 is the maximum of two terms: sum of the costs 𝑐𝑑 of all its duties and a fixed fraction 
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(𝜁) of the total time away from base (𝑇𝐴𝐹𝐵𝑝). Thus the planned cost of a pairing 𝑝  (measured in the units 

of hours of crew flying) is given by:  

𝑐𝑝 = max {(∑ 𝑐𝑑

𝑑

) , 𝜁 ∗ 𝑇𝐴𝐹𝐵𝑝}               (1) 

For each duty 𝑑, the planned cost (𝑐𝑑) is the maximum of three terms, a minimum guaranteed pay (𝛿) per 

duty, flying time (𝑓𝑙𝑦𝑑 ) of the duty, and a fixed fraction (𝜀 ) of the duty elapsed time (𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑑 ). 

Parameters 𝛿, 𝜀, 𝜁 may vary across different carriers. Thus the planned cost of duty 𝑑 (measured in the 

units of hours of crew flying) can be written as  

𝑐𝑑 = max{𝛿, 𝑓𝑙𝑦𝑑 , 𝜀 ∗ 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑑}                          (2) 

The objective of the deterministic crew pairing problem is to minimize the planned crew cost and is usually 

modeled as a set partitioning problem (Barnhart and Vaze, 2015b). We denote the set of flights by 𝐹 and 

the set of pairings by 𝑃. 𝑎𝑖𝑝  is 1 if pairing 𝑝 contains flight 𝑖, and 0 otherwise. 𝑥𝑝  is a binary decision 

variable which equals 1 if pairing 𝑝 is chosen in the crew pairing solution, and 0 otherwise. Then, the crew 

pairing problem can be formulated (ignoring crew deadheads) as 

      𝑀𝑖𝑛 ∑ 𝑐𝑝

𝑝∈𝑃

𝑥𝑝 

Subject to 

∑ 𝑎𝑖𝑝𝑥𝑝

𝑝∈𝑃

= 1,                            ∀𝑖 ∈  𝐹,                           (3) 

𝑥𝑝  ∈  {0,1},                                 ∀𝑝 ∈ 𝑃.                           (4) 
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1.2 Literature Review 

As mentioned at the beginning of this section, from an application perspective, our work is motivated by 

the work of Barnhart, Fearing and Vaze (2014). Using one year of flight delays data and a one-quarter 

sample of confidential passenger booking data from an airline, they estimated passenger itinerary flows 

and developed insights into the factors that affect the performance of the U.S. National Air Transportation 

System from a passenger perspective. They developed a methodology to model historical travel and 

delays for passengers. From a methodological perspective however, our work is fundamentally different 

from theirs. While they used a statistical approach to estimate passenger itineraries, estimation of crew 

itineraries is considerably more complicated because of the complex rules governing what constitutes a 

legal crew itinerary. Thus a statistical estimation approach is unsuitable for our task. Also, while the 

number of possible passenger itineraries per day can be in thousands for a large airline, the number of 

legal crew itineraries is usually larger by several orders of magnitude, often making it very difficult or 

impossible to even enumerate all of them exhaustively. 

Estimating delay propagation through crew connections is also much more complex than estimating the 

same through aircraft connections due to the more complex nature of crew work regulations than aircraft 

maintenance regulations (Barnhart and Vaze, 2015b). Several past studies on crew pairing optimization 

have tried to identify and capture one or more dimensions of a crew schedule that affect the extent of 

propagation. Broadly, these past studies can be divided into three main categories. First category of 

studies aims to incorporate one or more features that affect the ease of recovering the crew schedules 

after a disruption. Here, crew schedule recovery refers to the set of reactive measures available to an 

airline to bring its crew schedule back on track after a disruption and it typically includes alternatives such 

as delayed flight departures, crew swaps, reserve crews, flight cancellations, etc. Second category of 

studies aims to generate crew pairings that are difficult to get disrupted and/or have a low disruption 
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cost. Studies in the first and second categories deal exclusively with crew schedules without capturing the 

relationship between crew-based and aircraft-based propagation. The third category attempts to capture 

this interdependence.  

Studies in the first category usually focus only on one or two specific factors that improve recovery 

potential. Shebalov and Klabjan (2006) maximize the number of move-up crews, wherein a move-up crew 

for a flight is a crew that is not actually assigned to that flight but can be feasibly and legally assigned to 

it. On the other hand, Gao, Johnson and Smith (2009) extend the fleet purity idea proposed by Smith and 

Johnson (2006) to crew base purity. The crew base purity idea restricts the number of crew bases allowed 

to serve each airport in order to increase the opportunities to find a move-up crew in crew recovery. 

Shebalov and Klabjan (2006) as well as Gao, Johnson and Smith (2009) capture the potential for crew 

swaps, which is an important dimension of crew recovery process, but do not explicitly capture the extent 

of delay propagation through crew connections. 

Studies in the second category apply a variety of robust planning approaches to airline crew scheduling. 

Yen and Birge (2006) develop a two-stage stochastic programming model that implements a simplified 

recovery model for the second stage. Schaefer et al. (2005) adjust the cost of each crew pairing to include 

a combination of planned costs and a linear approximation of delay costs. The delay cost is assumed to 

be a function of four attributes, namely, 1) the sit time between consecutive flights within a duty, 2) the 

rest time between consecutive duties, 3) the total flying time in a duty, and 4) the total elapsed time in a 

duty. The rationale behind these choices is that the potential for the propagation of delays and disruptions 

is greater when the crew's sit and rest times are too short and when the per-duty flying and elapsed times 

are too long. Yen and Birge (2006) as well as Schaefer et al. (2005) account for the differences in the delay 

propagation potential of different crew pairings, but neither captures recovery actions such as crew 

swaps. 



8 

 

Because delays can propagate due to both late arriving/unavailable aircraft and late arriving/unavailable 

crew, there are many interdependencies between the effects of aircraft schedules and crew schedules on 

the propagation of delays and disruptions through the overall flight network. The aircraft scheduling and 

crew scheduling stages of the airline schedule planning process are conventionally solved in a sequential 

manner. However, recognizing the interdependencies between the two stages, in terms of the planned 

costs and delay propagation potential, some recent studies (such as Dunbar, Froyland and Wu (2012), and 

Weide, Ryan and Ehrgott (2009)) have developed integrated robust optimization models. Weide, Ryan 

and Ehrgott (2009) attempt to increase the buffer in crew connection times when the crew changes 

aircraft. Dunbar, Froyland and Wu (2012) focus explicitly on minimizing the delay costs while ignoring the 

planned costs. Cacchiani and Salazar-González (2016) solve an integrated fleet assignment, aircraft routing 

and crew pairing problem with a weighted average objective function that incorporates robustness solely 

as measured by the number of aircraft changes between successive flights in a crew itinerary. Mercier, 

Cordeau and Soumis (2005) also incorporate aircraft changes by the crew as a measure of robustness in 

their integrated aircraft routing and crew scheduling model. Ehrgott and Ryan (2002) and Tam et al. (2011) 

describe and evaluate a bi-criteria optimization approach to balance the planned crew costs and a single 

robustness measure which penalizes crew connections with aircraft changes and small crew sit times. 

Studies in this category usually emphasize aircraft changes and crew sit times but do not focus much on 

crew recovery potential, crew rest times, duty flying times, or duty elapsed times. 

In summary, past research studies in airline crew scheduling have identified the various features of airline 

crew schedules that affect the crew-propagated delays and disruptions (CPDD). However, no prior study 

has combined these different features into a single optimization model. Additionally, while some past 

studies, such as Yen and Birge (2006), have attempted to incorporate the actual delay costs into the crew 

pairing optimization models, these models have been highly simplified due to computational tractability 

issues. Finally, and most importantly, all aforementioned studies have focused, implicitly or explicitly, on 
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finding an “optimal” crew schedule with respect to a known optimization formulation. The problem that 

we solve in this paper can be thought of as the inverse of this problem. Given an actual crew pairing 

sample, our goal is to reverse engineer the process used, and the problem solved, by the airlines to 

generate the crew pairings that the airlines actually used. This will enable us to generate similar crew 

pairings for other airlines, and/or other aircraft families, and/or other time periods than the ones for 

which the crew pairing data sample is available. It is common knowledge that the major airlines typically 

use advanced optimization solvers to generate crew pairings. Furthermore, in addition to minimizing 

planned costs, most airlines are known to directly or indirectly attempt to reduce delay and disruption 

costs as well. However, the exact models and algorithms used by a particular airline for crew pairing 

optimization are proprietary. Therefore, in this paper we reverse engineer airlines’ crew pairing 

generation process with the objective of generating pairings that are similar to the actual airline-

generated crew pairings in terms of their CPDD potential. 

1.3 Contributions and Outline 

This paper makes four main contributions. First, we propose a comprehensive crew pairing optimization 

formulation that minimizes the combination of planned costs and the various features that make the crew 

schedules vulnerable to propagation of delays and disruptions. Second, we solve this model to near-

optimality by combining known ideas such as branch-and-bound and delayed column generation as well 

as a sequence of new heuristic ideas developed by us. The sizes of the networks in the problem instances 

solved by us far exceed those solved in past studies on robust or recoverable crew pairing optimization. 

Third, we embed this crew pairing generation problem in an upper-level calibration framework wherein a 

parameterized crew pairing optimization problem is solved repeatedly by varying the parameters until 

the resulting crew pairings are similar to those used by the airlines. This upper-level calibration problem 

represents the inverse crew pairing generation problem mentioned in Section 1.2. We employ a local-
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search heuristic for solving the upper-level calibration problem. Our algorithm is motivated by that of 

Schaefer et al. (2005) and borrows some features from theirs. Ours, however, is the first study to 

formulate and solve this inverse crew pairing generation problem. Finally, we generate and validate crew 

pairing solutions that are similar to those used by the airlines in the real world in terms of their potential 

for the crew-propagated delays and disruptions (CPDD). The out-of-sample testing results demonstrate 

the accuracy and stability of our modeling framework and algorithms. An important conclusion is that the 

ratio between the planned crew cost and approximate delay costs is found to be stable across airlines and 

aircraft types. 

The rest of the paper is structured as follows. Section 2 describes our overall modeling approach and 

problem formulation. Section 3 describes the solution approach including the exact algorithms and 

heuristic ideas developed by us to solve this challenging problem. Section 4 describes our computational 

case studies in terms of data and pre-processing, and presents evidence of the computational tractability 

of our approach. Section 5 describes the calibration and validation results obtained from our series of 

computational experiments. Finally, Section 6 describes how to use our results for estimating the CPDD 

for any given network and discusses the main conclusions and the directions for future research. 

2 Modeling Framework 

Our objective is to generate crew itineraries that are similar to the real-world crew itineraries as measured 

by the extent of the crew-propagated delays and disruptions (CPDD). Therefore, we first need to develop 

an appropriate similarity metric for comparing two crew pairing solutions with each other, for any given 

flight network. Defining similarity directly based on the actual costs of propagated delays and disruptions 

is problematic for multiple reasons. Propagated delays and disruptions depend on not only the crew 

schedules but also the underlying root (i.e., non-propagated) delays and disruptions, as well as the 

operational recovery actions used by the airline. Exact recovery actions used by the airlines are typically 
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not public knowledge. Hence these are difficult to model accurately. Moreover, while planning the crew 

schedule, the airline itself is unaware of the exact set of root delays and disruptions that it will face on a 

given day of operations. For these reasons, accurate calculation of the CPDD costs is impossible. Instead, 

we measure the similarity between crew pairing solutions in terms of their CPDD potential. As explained 

in Section 1.2, the CPDD potential is a function of various features of a crew schedule.  In Section 2.1, we 

classify these features into four categories and select six representative features for inclusion in our 

model. Then, in Section 2.2, we provide the mathematical formulation for the crew pairing optimization 

problem used as the basis of our calibration framework. Finally, in Section 2.3, we give a mathematical 

formulation for our calibration problem of minimizing the distance (i.e., maximizing the similarity) 

between the estimated and actual crew pairing solutions in terms of their CPDD potential as quantified 

by these six features.  

2.1 Representative Features 

In the absence of sufficient schedule buffers and recovery opportunities, delays and disruptions propagate 

to downstream flights leading to additional operating costs. Therefore, besides the planned crew costs, 

airlines often consider some of these buffers and/or recovery opportunities during crew scheduling to 

reduce these extra operational costs. There are a variety of mechanisms through which delays and 

disruptions affect downstream flights. When the sit time buffer (defined as the scheduled sit time minus 

the minimum required sit time) or the rest time buffer (defined as the scheduled rest time minus the 

minimum required rest time) between two consecutive flights is less than the arrival delay of the first 

flight, delay propagates to the second flight unless some recovery action, such as a crew swap, is able to 

prevent it. Thus the sit time buffers, the rest time buffers, and the crew recovery potential affect the crew-

propagated delays and disruptions (CPDD). However, if these two flights are scheduled to be operated by 

the same aircraft, then this delay to the second flight would be unavoidable due to aircraft-based 
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propagation, irrespective of whether the crew is on-time. Note that, as per the DOT classification, delay 

propagation in such situations is classified as aircraft-based propagation causing the CPDD to be counted 

as zero to avoid double-counting. Thus, whether or not the crew travels with the same aircraft affects the 

CPDD. Finally, if flight delays result in violation of any of the crew duty regulations and/or CBA rules, such 

as the total flying time in a duty or the total elapsed time in a duty, then the later flight becomes 

inoperable by its scheduled crew, resulting in either a flight cancelation or some crew recovery action. 

Thus, the available buffers (defined as the maximum allowable value minus the scheduled value) in the 

total flying time or the total elapsed time in a duty also affect the CPDD. This discussion motivates our 

classification of features affecting the CPDD as well as our choice of the representative features. 

We divide the features affecting the CPDD into four categories: Aircraft Change, Push-Back, Crew Legality, 

and Crew Swaps. This categorization highlights the variety of ways in which delays and disruptions can 

propagate through crew connections, and it facilitates any future revisions or extensions of the feature-

set based on the methodologies we have developed. 

2.1.1 Aircraft Change 

We first motivate this category with an example. Consider two flights, Flight 1 and Flight 2, scheduled to 

be operated consecutively by the same crew within the same duty. If Flight 1 and Flight 2 are scheduled 

to be operated by the same aircraft, then irrespective of whether Flight 1’s is delayed or not, by the time 

the aircraft is ready to operate Flight 2, the crew will typically be ready as well. Thus, there will be either 

no delay propagation or there will be some delay propagation attributed to the late arriving aircraft. 

However, no crew-propagated delay or disruption will occur. On the other hand, if Flight 1 and Flight 2 

are scheduled to be operated by different aircraft, then to avoid delay propagation from Flight 1 to Flight 

2, the crew on Flight 1 will need to exit that aircraft, reach the aircraft scheduled to operate Flight 2 and 

get ready to start operating it before the scheduled departure time of Flight 2. In this scenario, delay might 
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propagate through the crew connection. Therefore, if the crew needs to change aircraft between 

consecutive flights within a duty, there is a potential for the CPDD to occur. Hence whether or not the 

crew stays with the aircraft is an important factor affecting the CPDD (U.S. G.A.O, 2008). Therefore the 

number of times a crew switches aircraft within a duty is included as one of the representative features 

in our model. 

2.1.2 Push-Back 

When a flight’s arrival is delayed, and the same crew within the same duty is scheduled to operate a 

subsequent flight, which is not scheduled to be operated by the same aircraft, a simple policy is to delay 

the subsequent flight until its scheduled crew is ready to operate it, regardless of how severe the delay is. 

We call this as the push-back strategy (Rosenberger et al., 2002). Similarly, when the arrival of the last 

flight in a crew duty (which is not the last duty in the crew pairing) is delayed, push-back strategy may be 

used to delay the departure of the first flight in the crew’s next duty regardless of how severe the delay is 

and irrespective of whether or not the same aircraft is scheduled to operate the two flights. Note that, 

under the push-back strategy, delay propagates through the crew connection when the buffer in the crew 

sit time or the crew rest time exceeds the arrival delay of the first flight. Thus, the crew sit time buffer 

(between flights not scheduled to be operated by the same aircraft) and the crew rest time buffer are 

important factors affecting the CPDD potential, and hence both are used as representative features in our 

model. 

2.1.3 Crew Legality  

When developing crew schedules, airlines must adhere to FAA crew safety regulations and CBAs regarding 

the maximum flying time in a duty and the maximum elapsed time in a duty. For example, if FAA 

regulations limit a pilot to a maximum of 8 hours of flying time during a duty, and if the scheduled flying 

time is exactly 8 hours or just under 8 hours, then even a small delay to one of the earlier flights could 
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cause the actual flying time to exceed 8 hours. This would disallow the pilot to operate the last flight in 

the duty until the completion of a rest period, either leading to a flight schedule disruption such as 

cancellation or large delay, or triggering a crew recovery action such as a crew swap or the use of reserve 

crews. Note that, under this scenario, the CPDD occur even when the crew connection time buffer is large 

and/or the crew is not scheduled to change aircraft between flights. A similar argument holds when the 

scheduled elapsed time in a duty is equal to or just under the maximum allowable duty elapsed time. 

Thus, the buffer in the flying time and the elapsed time in a crew duty are important factors affecting the 

CPDD potential, and hence both of these are used in our model as representative features. 

2.1.4 Crew Swaps 

As mentioned in Section 1.2, crew schedule recovery actions include alternatives such as delayed flight 

departures, crew swaps, reserve crews, flight cancellations, etc. While delaying flight departures is the 

default alternative, under significant disruption events, it can result in very large and expensive delays. A 

flight cancellation cannot be done in isolation; typically it leads to cancellation of one or more other flights 

scheduled to be operated by the same aircraft and requires extensive amounts of passenger rebooking. 

Use of reserve crews is constrained by their availability and is typically an expensive strategy as well. A 

crew swap involves assigning a late arriving crew to operate a flight with a later departure time than its 

originally scheduled flight and instead using a different crew to operate the earlier flight. To allow a crew 

swap, the two swapped pairings must be from the same crew base, must end on the same day, and either 

crew must be qualified (in terms of equipment, route and airport certifications) to operate the subsequent 

flights in both pairings (Shebalov and Klabjan, 2006). 

Compared to other crew recovery actions such as cancellations or reserve crews, swaps are typically less 

expensive, and therefore airlines find it beneficial to increase the crew-swapping opportunities. Gao, 

Johnson and Smith (2009) introduced the concept of crew base purity to restrict the number of crew bases 
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serving each airport. They found that improving the crew base purity can significantly increase crew-

swapping opportunities and thus reduce the cost of crew recovery. They describe the idea of using an 

adjacency graph to quantify the extent of crew swapping potential. In an adjacency graph, airports are 

represented by nodes and the existence of an arc implies that there is at least one flight connecting the 

two nodes. For a specific airline’s network, distance between two airports in an adjacency graph is defined 

as the minimum number of arcs that need to be traversed to go from one airport to the other. Crews 

serving airports that are more distant from the crew base, lead to fewer crew swapping opportunities and 

thus lower recovery potential. In our model, the number of times a crew visits an airport which is at a 

distance of 2 or more from its base is used as a feature representative of the crew swapping potential and 

hence representative of the CPDD potential. Other features indicating the crew recovery potential, such 

as, the number of reserve crew members available at various airports, could also be potentially included 

as representative features. However, we did not include them because of the lack of data on the 

availability of reserve crews in our dataset. 

2.2 Robust Crew Pairing Formulation 

The six representative features identified in Section 2.1 were integrated into a mathematical model that 

generates crew pairings that are similar to the real-world airline crew pairings. Our model formulation is 

motivated by the work of Schaefer et al. (2005), which used a penalty method for quantifying and 

maximizing the robustness of a crew schedule. They optimize the total expected operational cost of a 

crew pairing solution, which is defined as the sum of the planned cost and a linear function of four 

attributes of each crew pairing serving as proxy measures of its robustness. They assume that the aircraft 

are always available and hence no delay propagates through the aircraft connections. Also, the recovery 

method is assumed to be push-back only. Finally, they assume that the operational cost of a crew pairing 

solution is the sum of the operational costs of the individual chosen pairings, and that interaction between 
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crew pairings does not have an effect on the operational costs. We retain this last assumption, but partially 

relax the first and second assumption as follows. Similar to the four attributes chosen by Schaefer et al. 

(2005), we also include, in our representative features set, the scheduled sit time when crew changes 

planes, the scheduled rest time between duties, flying time in a duty, and elapsed time in a duty. 

Additionally, we also include as one of our representative features, the number of times a crew changes 

aircraft between successive flights within a duty. This provides a partial proxy for the additional delay that 

may result from the late arriving aircraft. Similarly, we also include the crew base purity, as measured by 

the number of times the crew arrives at an airport whose distance from the base is 2 or greater in the 

adjacency graph. We define these as the instances of violation of the crew base purity. Crew base purity 

provides a proxy for the crew recovery potential through crew swaps, as described in Section 2.1. Thus, 

we used the following six features. 

Feature 1: Scheduled sit time when the crew changes aircraft. 

Feature 2: Scheduled rest time between duties. 

Feature 3: Flying time in a duty. 

Feature 4: Elapsed time in a duty. 

Feature 5: Number of crew base purity violations. 

Feature 6: Number of aircraft changes by the crew within a duty. 

Our method of incorporating these features into the crew pairing optimization model is an extension of 

the penalty method developed by Schaefer et al. (2005). For any pairing 𝑝, let 𝑐𝑝 be its planned cost, and 

𝑓𝑝 be the penalty cost as a function of feature 𝑖. Then the total cost (𝑐𝑝̅) of pairing 𝑝 (measured in the 

units of hours of crew flying) is defined as 

𝑐𝑝̅ = 𝑐𝑝 + ∑ 𝑓𝑝(𝑖)

6

𝑖=1

                                                                            (5) 
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For Features 3 and 4, as their scheduled value approaches the largest acceptable value, the potential for 

the crew-propagated delays and disruptions (CPDD) increases. For instance, the FAA requires that a crew 

must rest if it has already flown for 8 hours in a duty. As the scheduled flying time in a duty increases, the 

chances of this pairing becoming illegal during operation increase because of increased likelihood of 

violation of this rule. Similarly, for Features 1 and 2, as their scheduled value approaches the smallest 

acceptable value, the CPDD potential increases. For Feature 𝑖, let 𝛿𝑖 denote the relevant bound, that is, 

lower bound for Features 1 and 2 and upper bound for Features 3 and 4. For example, for Feature 2, 𝛿2 is 

the minimum rest time as allowed by the FAA regulations and the CBAs. For 𝛿2 of 10 hours, rest periods 

shorter than 10 hours in length are not permitted. Let 𝐶𝑜𝑢𝑛𝑡(𝑖, 𝑝) be the number of times that Feature 𝑖 

occurs in pairing 𝑝, and let 𝑉𝑖,𝑝
𝑗

 be the value of the 𝑗𝑡ℎ occurrence of Feature 𝑖 in pairing 𝑝. For instance, if 

pairing 𝑝 has three duties with elapsed times of lengths 10, 12, 5 hours respectively, then 𝐶𝑜𝑢𝑛𝑡(4, 𝑝) =

3, 𝑉4,𝑝
1 = 10, 𝑉4,𝑝

2 = 12, and 𝑉4,𝑝
3 = 5.  We use parameters 𝛼𝑖 to represent the maximum penalty, and 𝛽𝑖  

to represent the slope in Feature 𝑖 's penalty function.  So, for the first four features, the function 𝑓𝑝(𝑖) is 

defined as: 

𝑓𝑝(𝑖) = ∑ max (𝛼𝑖 − 𝛽𝑖|𝑉𝑖,𝑝
𝑗

− 𝛿𝑖|, 0)

𝐶𝑜𝑢𝑛𝑡(𝑖,𝑝)

𝑗=1

, ∀𝑖 ∈ {1,2,3,4}                            (6) 

The form of function 𝑓𝑝(𝑖) described by Equation (6) is similar to that used by Schaefer et al. (2005). It 

assumes that 𝑓𝑝(𝑖) is additive across the effects of all occurrences of feature 𝑖 in pairing 𝑝. Also, it assumes 

that, within a range, the effect of the value of the feature in each occurrence is linear and increases as the 

value of the feature gets increasingly closer to the relevant bound 𝛿𝑖. At the bound, the effect has the 

maximum value 𝛼𝑖, because this leaves zero buffer in case of any prior delays or disruptions, and hence 

creates the maximum CPDD potential. Farthest away from the bound (i.e., at a distance of 
𝛼𝑖

𝛽𝑖
), the effect 

is zero. This is because large enough buffers almost fully eliminate any CPDD potential. 
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For defining the penalty function for Feature 5, we observe that if most airports are directly connected to 

the crew base, the airline has a greater potential for recovery by finding a move-up crew. Also, as for 

Feature 6, we observe that if most crews stay with the aircraft, then most of the delay propagation would 

be attributed to late arriving aircraft, rather than being counted as part of the CPDD. So we penalize the 

number of occurrences of crew changing aircraft and the number of occurrences of crew base purity 

violations. Let parameters 𝛾𝑖, 𝑖 ∈ {5,6} denote the penalty weights for Features 5 and 6. With 𝐶𝑜𝑢𝑛𝑡(𝑖, 𝑝) 

defined the same way as that for Features 1 through 4, the function 𝑓𝑝(𝑖) for Features 5 and 6 is defined 

as: 

𝑓𝑝(𝑖) = 𝛾𝑖 ∗ 𝐶𝑜𝑢𝑛𝑡(𝑖, 𝑝), ∀𝑖 ∈ {5,6}                                                                         (7) 

Note that this expression is simpler than that for Features 1 through 4 because the number of aircraft 

changes and the number of crew base purity violations directly have an effect on the CPDD potential, as 

against the effects of Features 1 through 4 which depend on the difference between the feature value 

and the relevant bound. This results in a crew pairing optimization model given by 

𝑀𝑖𝑛 ∑ (𝑐𝑝 + ∑ 𝑓𝑝(𝑖)

6

𝑖=1

)

p∈P

𝑥𝑝                                                                               (8) 

Subject to 

∑ 𝑎𝑖𝑝𝑥𝑝

𝑝∈𝑃

= 1,                            ∀𝑖 ∈  𝐹                                                       (9) 

𝑥𝑝  ∈  {0,1},                                  ∀𝑝 ∈ 𝑃.                                                     (10) 

2.3 Calibration Framework 

There are several ways of conceptualizing our calibration problem. Given the optimization model (8-10), 

we could consider the calibration problem as one of estimating the parameters 𝛼𝑖 , 𝑖 ∈ {1,2,3,4}, 𝛽𝑖 , 𝑖 ∈
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{1,2,3,4} and 𝛾𝑖 , 𝑖 ∈ {5,6}. Thus it is an inverse optimization problem. While an inverse linear optimization 

problem has been shown to be another linear optimization problem (Ahuja and Orlin, 2001), and hence 

is easy to solve, similar results do not exist for an inverse integer optimization problem (IIOP). Recently, 

Lamperski and Schaefer (2015) developed an approach to formulate the IIOP as an integer optimization 

problem with exponentially larger size. Others have proposed heuristic approaches for solving variants of 

the IIOP (see Duan and Wang, 2011; and Wang, 2013; for recent examples). However, these are 

computationally intensive and deal with only small-sized problems. A crew pairing optimization problem, 

on the other hand, typically consists of millions of (or more) variables, and is typically solved using 

complex, resource-intensive algorithms such as branch-and-price (Barnhart et al., 1998). Therefore, 

solving an inverse version of such a problem is extremely challenging for realistic problem sizes and no 

existing study has addressed this challenge successfully. 

Alternatively, the calibration problem could also be considered a type of supervised machine learning 

problem where the goal is to generate crew pairing solutions similar to those in the labeled training data 

by learning the parameters 𝛼𝑖 , 𝑖 ∈ {1,2,3,4}, 𝛽𝑖 , 𝑖 ∈ {1,2,3,4} and 𝛾𝑖 , 𝑖 ∈ {5,6}. This labeled training data, 

represented by a set of crew pairings, is in the form of a set of sequences of flights. This is in a non-

standard structure for supervised machine learning, and the mechanism through which the parameters 

affect the labels is also very complicated. Thus, none of the typical supervised learning approaches, such 

as support vector machines or neural networks, to name a few, are directly applicable. 

This discussion suggests that our calibration problem has several unique attributes, and is computationally 

much more expensive compared with what existing methods have been shown to solve. Therefore, we 

propose a new mathematical framework and a solution heuristic for solving this calibration problem. First, 

in this section we describe the framework and the relevant mathematical notation. Then, in Section 3, we 

describe the solution heuristic. 
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Let us denote the set of parameters by 𝑃𝐴𝑅𝐴𝑀𝑆. Thus, 𝑃𝐴𝑅𝐴𝑀𝑆 = {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛾5, 𝛾6}. 

Let 𝑥̂(𝑃𝐴𝑅𝐴𝑀𝑆) be the crew pairing solution generated by solving the optimization model (8-10) for a 

given set of 𝑃𝐴𝑅𝐴𝑀𝑆 values, and let 𝑥 be the real-world airline’s scheduled crew pairing solution in our 

sample data. So, for each set of parameters, we have  

𝑥̂(𝑃𝐴𝑅𝐴𝑀𝑆) ∈  argmin
 𝑥𝑝 ∈ {0,1} ∀𝑝 ∈𝑃

{∑ (𝑐𝑝 + ∑ 𝑓𝑝(𝑖)

6

𝑖=1

)

p∈P

. 𝑥𝑝: ∑ 𝑎𝑖𝑝𝑥𝑝

𝑝∈𝑃

= 1, 𝑖 ∈  𝐹}          (11) 

Also, let 𝐹𝑥̂(𝑖) = ∑ 𝑓𝑝(𝑖)p∈P 𝑥̂𝑝  and 𝐹𝑥(𝑖) = ∑ 𝑓𝑝(𝑖)p∈P 𝑥𝑝  be the values of the 𝑖 th components of the 

penalty functions corresponding to the crew pairing solutions 𝑥̂ and 𝑥 respectively. Then the calibration 

problem is formulated as follows: 

𝑚𝑖𝑛 ∑|𝐹 𝑥̂(𝑖) − 𝐹𝑥(𝑖)|

6

𝑖=1

                                                                                (12) 

Subject to 

𝑥̂ ∈  argmin
 𝑥𝑝 ∈ {0,1} ∀𝑝 ∈𝑃

{∑ (𝑐𝑝 + ∑ 𝑓𝑝(𝑖)

6

𝑖=1

)

p∈P

. 𝑥𝑝: ∑ 𝑎𝑖𝑝𝑥𝑝

𝑝∈𝑃

= 1, 𝑖 ∈  𝐹}   (13) 

𝑓𝑝(𝑖) = ∑ max (𝛼𝑖 − 𝛽𝑖|𝑉𝑖,𝑝
𝑗

− 𝛿𝑖|, 0) , 𝑖

𝐶𝑜𝑢𝑛𝑡(𝑖,𝑝)

𝑗=1

𝜖 {1,2,3,4}                 (14) 

𝑓𝑝(𝑖) = 𝛾𝑖 ∗ 𝐶𝑜𝑢𝑛𝑡(𝑖, 𝑝), 𝑖 𝜖 {5,6}                                                              (15) 

Note that this formulation minimizes the L1 norm of the difference between 𝐹 𝑥̂(𝑖)  and 𝐹𝑥(𝑖) . 

Alternatively, we could consider minimizing other norms (such as L2 norm) as well. Our computational 

experiments with L1 and L2 norms showed that these two alternative formulations did not lead to any 

significant changes in our results. 
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3 Solution Approach 

In order to generate crew pairings that are similar to those scheduled by the airline, we need to solve the 

calibration optimization problem represented by (12-15). The similarity or closeness between the two 

crew pairing solutions provides a measure of the success of the calibration process. However, in order to 

truly assess the stability of this approach, we need to perform out-of-sample testing. As described in 

Section 4, we use one set of sample data to calibrate the parameters and then use the same calibrated 

values with another set of sample data (from a different airline, and/or different aircraft family, and/or 

different time period) to assess the stability of our approach. But before that, we need to develop a 

heuristic to solve this very difficult problem represented by (12-15). Note that the right hand side of 

constraint (13), in itself, is a very challenging problem for large network sizes. It is a type of robust crew 

pairing optimization problem, and no prior study in the literature has solved such problems of size as large 

as those of the networks used in this paper. Therefore, we develop and implement new heuristic 

approaches to solve the inverse of this already very difficult problem. In this section, we describe the 

solution approach. Then, in Section 4, we present our computational results. 

We begin this section by describing, in Section 3.1, our overall heuristic for solving the calibration problem. 

This involves repeatedly solving instances of the model (8-10). Section 3.2 summarizes the solution 

approach for model (8-10), which itself includes repeatedly solving instances of the LP (linear 

programming) relaxation of this integer optimization problem. The solution to the LP relaxation of model 

(8-10) involves repeatedly solving instances of a sub-problem called the pricing problem. The process for 

solving this pricing problem is described in Section 3.3. 

3.1 Local Search Heuristic for the Calibration Problem 

We use a local search method for solving the optimization problem given by (12-15). It starts with all 

parameters in the set 𝑃𝐴𝑅𝐴𝑀𝑆  initialized to 0. It then varies the parameters corresponding to each 
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feature, one feature at a time, using a simple grid search to identify any opportunities for improving the 

objective function (12). The algorithm terminates when no better solution can be found in an iteration 

and returns the current best solution. Note that these grid-searches require us to examine various 

combinations of 𝑃𝐴𝑅𝐴𝑀𝑆  values to calculate the ∑ |𝐹𝑥̂(𝑖) − 𝐹𝑥(𝑖)|6
𝑖=1  value. Examining each 

combination of 𝑃𝐴𝑅𝐴𝑀𝑆 values requires solving the robust crew pairing optimization problem given by 

(8-10). Next, we discuss the process for solving this problem. 

3.2 Crew Pairing Solution Approach 

Typically, the deterministic crew pairing optimization problem is solved by techniques such as branch-

and-price (Barnhart et al., 1998), which combine ideas from the branch-and-bound algorithm for solving 

integer optimization problems with the delayed column generation ideas for solving large-scale linear 

optimization problems. The reader is referred to Kasirzadeh et al. (2015) for a detailed review of the state-

of-the-art techniques in this area. Unlike previous studies, our goal is not just to solve the robust crew 

pairing problem once. Instead, its solution constitutes a sub-problem within our overall calibration 

optimization process described in Section 3.1. The overall calibration algorithm requires solving hundreds 

of these individual crew pairing optimization problems. Therefore, our computational performance 

requirements are far more stringent than those of most prior studies in the literature. We cannot afford 

to wait for several hours to solve the crew pairing optimization problem. Instead of using column 

generation at each node of the branch-and-bound tree, which is very time consuming, we use a heuristic 

strategy to solve this problem. As explained in Section 4, this strategy helps us in obtaining solutions that 

are within a small optimality gap. This strategy can be summarized as follows. It refers to two other 

algorithms, Algorithm A and Algorithm B, which are described in Section 3.3. 

Heuristic Solution Strategy for the Robust Crew Pairing Optimization Problem 
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Step 1: Form the Restricted Master Problem (RMP) by including only a small subset of columns and 

relaxing the integrality constraints.  

Step 2: Solve the RMP to find a set of dual variable values. 

Step 3: Using the dual variables from Step 2, solve the pricing problem with Algorithm B to identify if one 

or more variables have negative reduced costs. If so, add all variables with negative reduced costs to 

RMP’s column pool and go back to Step 2; else go to Step 4. 

Step 4: Using the dual variables from Step 2, solve the pricing problem with Algorithm A to identify if one 

or more variables have negative reduced costs. If so, add all variables with negative reduced costs to 

RMP’s column pool and go back to Step 2; else go to Step 5. 

Step 5: Fix the largest fractional variable to 1 and check if an integer solution is obtained. If not, go back 

to Step 2; else stop. 

This algorithm was developed after experimenting with various alternative heuristic ideas, and each step 

was chosen carefully based on the computational performance with and without it. Our computational 

experiments revealed that Step 5 helps by improving the computational performance substantially while 

increasing the optimality gap by very little or nothing. Also, we found that decomposing the pricing 

problem’s solution process into two steps, i.e., using Algorithm B in Step 3 and Algorithm A in Step 4, was 

a vital part of the computational speedup that we achieved. Without this, we would not have been able 

to finish all our experiments in reasonable amounts of time to accomplish this research project. More 

details about this two-step approach are provided in Section 3.3. 
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3.3 Solution to the Pricing Problem 

Researchers have proposed and implemented a variety of methods for solving the pricing problem. Multi-

Label Shortest Path (MLSP) is a commonly used pricing algorithm in the crew pairing context (Desaulniers 

et al. 2005; Vance et al. 1997). Unlike the deterministic version, our robust crew pairing problem involves 

a more complicated objective function including the planned costs and six types of penalty costs. 

Furthermore, as explained in Section 4, our network size is the largest among all existing research studies 

addressing any variety of the robust crew pairing problem. Therefore, we cannot directly use an existing 

method to solve the problem to near optimality in a limited time. Therefore, we develop a new two-step 

approach to solve the pricing problem to optimality. This approach is presented in Appendix A. 

4 Case Study 

In this section, we apply the models presented in Section 2 and the solution methods presented in Section 

3 (and the Appendices) to four networks from two airlines across multiple time periods. We use 

confidential airline data containing crew scheduling samples acquired from these two airlines to calibrate 

and validate our parameterized crew pairing models. The data sources and data preprocessing steps are 

described in Section 4.1, while the computational performance of our models is highlighted in Section 4.2.  

4.1 Data Source and Data Preprocessing 

We acquired crew schedule samples from one major regional carrier (RC) and one major network legacy 

carrier (NLC) in the U.S. The RC has a homogenous fleet consisting of only one fleet family and the data 

available to us spanned two full months, namely, March and April 2014. The NLC’s operations consisted 

of several different fleet families. However, for our computational experiments we chose only the three 

largest networks, namely, those operated by A320, B737 and B757 aircraft types, because the others were 

much smaller in size. The NLC’s crew scheduling data sample spanned one full year, from August 2013 to 

July 2014. 

http://link.springer.com/search?facet-creator=%22Guy+Desaulniers%22
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Aside from this confidential data, we also used the Airline On-Time Performance (AOTP) database from 

the BTS website (BTS, 2016) which contains on-time arrival data for domestic flights by all major U.S. 

carriers. Most importantly for our purposes, AOTP provides tail number for each flight, which is a key 

piece of information useful to track aircraft rotations in real-world airline schedules. Since our data is 

obtained from two separate sources, some data preprocessing steps, including data cleaning and merging, 

needed to be performed before using the data for model calibration and validation.  

We obtained the true values of the planned crew cost parameters, such as 𝛿, 𝜀, and 𝜁, as well as the values 

of the lower limits on the crew sit times and the crew rest times, and the upper limits on the maximum 

duty flying time and the maximum duty elapsed time from both the airlines represented in our data 

samples. Finally, note that all our data is related to the cockpit (and not the cabin) crew schedules, which 

are more stringent in their regulations and hence are expected to be responsible for a majority of the 

crew-propagated delays and disruptions. So our analysis is restricted to the cockpit crew schedules only, 

and hence deals with a large part, but not all, of the crew-propagated delays and disruptions. Note that 

this is a limitation of the available data and not of our methodology which would be valid if we were to 

perform a similar analysis with the cabin crew scheduling data. 

4.2 Computational Experiments 

CPLEX 12.5 solver with its default settings is used to solve all the linear and integer optimization problems. 

An 8-thread / 4-core Intel® i7-X5600 CPU with 8GB RAM and Windows 7 Professional as the operating 

system was used for all computational experiments. 

       Table 1. Computational Performance of Our Heuristic 

Network Size 

(Flights) 

Pricing Approach Root LP 

Lower Bound 

Our Integer 

Solution 

Gap Solution Time 

(hours) 

102 Algorithm A Only 398.36 398.37 0.025% <0.1 

Algorithm B + Algorithm A 398.36 398.37 0.025% <0.1 
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3300 Algorithm A Only 12760.43 12832.12 0.56% 10 

Algorithm B + Algorithm A 12760.43 12832.12 0.56% 2 

For demonstrating the computational performance of our crew pairing optimization approach, we 

consider two networks: one with 102 flights and the other with 3300 flights. We first solve the root node 

LP relaxation to optimality to get a lower bound on the optimal objective function value. This is listed in 

the third column of Table 1. Then using the method described in Section 3.2, we obtain a feasible, but not 

necessarily optimal, solution of the integer optimization problem. Its objective function value is listed in 

the fourth column. Fifth column gives the gap between the values in the third and fourth columns by 

dividing the difference between the two by the value in the third column. Note that this gap gives an 

upper bound on the true optimality gap of our heuristically obtained solution. The last column gives the 

total runtime for obtaining the solution in the fourth column.  

Second column lists the solution approach. We first list the performance of our overall heuristic using the 

exact SPPRC method (as described in Appendix A), i.e., without using Algorithm B. We also list the 

performance of our modified method, i.e., when using both Algorithm A and Algorithm B. Across all cases 

in Table 1, the gap was at most 0.56%. For the small network, Algorithm B does not help in speeding up 

because Algorithm A alone is sufficient to solve it within a few minutes. However, in case of the large 

network with 3300 flights, the combined use of Algorithm A and Algorithm B, as described in Section 3.2, 

significantly reduces the overall computational time from 10 hours to 2 hours. Similar improvements were 

observed in all our large network instances. This demonstrates the value of using our modified two-step 

pricing approach. 
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5 Calibration and Validation Results 

5.1 Calibration Results 

Table 2 lists the estimated parameters resulting from our calibration process as described in Section 4.1, 

while Table 3 lists the penalty function values corresponding to each feature. 

Table 2. Parameter Results 

 

 
Tables 2 and 3 present results using four distinct networks, namely, regional carrier’s complete network 

(RC) excluding the flights that were filtered out in pre-processing, and the network legacy carrier’s 

networks using the A320 fleet family (NLC-A320), the B737 fleet family (NLC-B737), and the B757 fleet 

family (NLC-B757). The numbers of flights in the RC, NLC-A320, NLC-B737 and NLC-B757 networks were 

2432, 1200, 1840, and 147, respectively. All experiments were conducted over a seven day time horizon 

and the maximum number of duties allowed in a single crew pairing was 4 in all cases. 

Table 3. Penalty Function Values 

Cost Type  Planned Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 %age 

RC Airline Sample 4590.40 105.87 42.05 0 3.15 0 33.90 3.87% 

Without Calibration 4143.38 293.72 46.94 4.08 93.60 0 43.34 10.41% 

With Calibration 4244.99 91.23 40.66 0.41 8.44 0 34.80 3.97% 

NLC-A320 Airline Sample 4800.45 5.26 0 15.91 19.39 3.42 28.07 1.48% 

Without Calibration 4515.51 13.05 0 62.24 148.29 5.30 37.45 5.57% 

With Calibration 4539.24 5.27 0 9.48 12.53 3.38 28.00 1.28% 

NLC-B737 Airline Sample 7448.00 0.77 0 53.74 32.75 9.44 182.4 3.61% 

Without Calibration 6696.80 9.35 0 300.36 280.52 12.56 280.00 11.65% 

With Calibration 6773.94 2.05 0 15.77 12.21 10.88 175.20 3.09% 

NLC-B757 Airline Sample 976.18 0.44 1.08 0.47 3.52 0 0 0.56% 

Feature Type Parameter RC NLC-A320 NLC-B737 NLC-B757 

Type 1 α1 1 0.3 0.3 0.8 

β1 1.5 0.65 1 3 

Type 2 α2 0.5 0 0  1.5 

β2 0.15 0 0 1.1 

Type 3 α3 0.4 1.1 3 1 

β3 1.4 0.4 1.25 1 

Type 4 α4 2 1.65 2 3.8 

β4 1.5 0.5 0.7 1.3 

Type 5 γ5 0 0.025 0.08 0 

Type 6 γ6 0.05 0.07 0.4 0 
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Without Calibration 925.08 0.41 2.17 2.28 22.25 0 0 2.85% 

With Calibration 927.09 0 0 0.77 6.26 0 0 0.75% 

In addition to the penalty function values corresponding to each feature, Table 3 lists the planned cost 

values for comparison purposes. In the last column, the total penalty cost as a percentage of the planned 

cost is listed. For each network, there are three rows. All three rows provide the components of the 

objective function evaluated using the calibrated parameter values listed in Table 2. The first row uses the 

actual airline-provided crew pairings. The second row uses the crew pairings obtained by solving the crew 

pairing optimization problem by setting all parameters to 0. Finally, the third row uses the crew pairings 

obtained by solving the crew pairing optimization problem by setting all parameters to their calibrated 

values (listed in Table 2). Note that the calibration algorithm does not explicitly attempt to match the 

planned cost values, because our aim is to match the CPDD potential alone. Yet, for all four networks, the 

planned costs of the crew pairing solution generated by our approach are found to be closer to the actual 

airline-provided crew schedules with calibration than without calibration. Across networks and cost types, 

the cost values with calibration were found to be closer (in most cases significantly closer), than the cost 

values without calibration, to the airline-provided crew pairing solutions in 22 out of the 23 network-cost 

type combinations in Table 3. Note that we have excluded the network-cost type combinations where all 

three values are zeros, which happens in 5 instances. In Section 5.2, we provide a metric for an easy 

comparison of this degree of closeness in the form of a percentage error measure. 

Tables 2 and 3 exhibit several differences between the four networks. Some of these differences reflect 

the differences in the crew pay and crew legality rules. For the NLC-B737 and NLC-A320 networks, crew 

pay does not depend on the time away from base (i.e., parameter 𝜁 in (1) equals 0). As a result, there is 

no tradeoff associated with the length of the rest period. For networks with nonzero 𝜁 values, having 

shorter rest periods can cause additional delay propagation while having longer rest periods can add to 

the planned crew costs. Absent this tradeoff, for the  NLC-A320 and NLC-B737 networks, the optimization 
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simply sets the rest period lengths such that the Type 2 penalty function value is zero irrespective of the 

values of 𝛼2 and 𝛽2. For the RC network, we find that irrespective of the values of the Type 5 parameters 

𝛼5 and 𝛽5, Type 5 penalty function value equals zero. Recall that Type 5 penalty function penalizes the 

number of crew-base purity violations. Because of the simple hub-and-spoke structure of the RC network, 

most crew travel from a hub to a spoke and back, and there isn’t much opportunity for changing the Type 

5 penalty cost by varying 𝛾5. Therefore, for the RC network, 𝛾5 value remains 0 even after calibration. 

Finally the NLC-B757 network is the smallest among the four, due to which crews usually don’t have too 

many alternatives other than staying with the aircraft and the crews do not end up going more than a 

distance of 1 unit away from the crew base in the adjacency graph. This simplified structure of the network 

explains why both Type 5 and Type 6 parameters and the corresponding penalty function values are set 

to 0 for the NLC-B757 network. 

Although these four flight networks vary in size, and although the absolute CPDD level cannot be directly 

compared across the four networks, the values in the last column of Table 3 range between 0.75% and 

4% across all four networks, for the airline-provided crew schedules and also for the solution generated 

by our calibrated model. These numbers are much higher for the crew-schedules generated using the 

uncalibrated model. These results demonstrate that our approach generates crew schedules whose 

balance between planned and operational costs is similar to that of the actual crew-scheduling solution 

used by the airlines. Previous studies involving robust crew pairing optimization, such as Yen and Birge 

(2006), have emphasized the importance of finding the right tradeoff between the planned and 

operational costs. They test effects of different penalty parameters to control this tradeoff, but do not 

provide explicit insights into the right tradeoff values. Our results, for the first time, allow us to get a 

measure of the perceived balance between the planned costs and the penalty costs as reflected by the 

airlines’ actual crew scheduling practices. Table 3 suggests that the right balance between the planned 
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and penalty costs across the four networks is in a relatively narrow range of 0.75% to 4% and is thus quite 

stable across airlines and aircraft families. 

Unlike previous studies, such as Schaefer et al. (2005), Shebalov and Klabjan (2006), Gao, Johnson and 

Smith (2009) which focus on minimizing a subset of the factors affecting the CPDD, we use a more 

comprehensive approach by including a wider variety of factors. Unlike Yen and Birge (2006) who consider 

the total expected cost of future disruptions, our approach can give a separate ratio between the penalty 

cost corresponding to each feature of the operational cost and the planned cost. By allowing penalty costs 

of each component to be assessed separately, we get a clearer understanding of the relative importance 

of each component as perceived by the airlines.  

Table 3 provides some preliminary evidence of the effectiveness and accuracy of our calibration 

framework. However, there are several shortcomings of using the in-sample penalty costs to assess the 

similarity of our solutions to the airline-provided crew schedules. First, this in-sample comparison has an 

inherent bias because we are using the same data samples to calibrate and to test the accuracy. We 

address this concern in Section 5.2 by presenting results of computational experiments where the 

parameter calibration is performed using one dataset and then other datasets are used to assess the out-

of-sample accuracy of our approach. Second, we are measuring the closeness of the two solutions using 

penalty functions, which themselves depend on the calibrated parameter values. To make our 

comparisons more meaningful, we compare the distributions of the actual feature values in Section 5.3. 

Finally, all methods used by us for evaluating the accuracy of our approach depend on the features that 

we deem to be good proxies for the CPDD. While many of these were chosen and are well-supported by 

previous research studies, they are not likely to be precise measures of the CPDD. Therefore, a true test 

of the performance of our approach can only be conducted by comparing the actual CPDD. This concern 

is addressed in Section 6.1. 
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5.2 Out-of-Sample Validation Results 

This section demonstrates the accuracy and stability of our results through out-of-sample validation. First, 

in Tables 4 through 7, we present the results where the calibration and validation datasets belong to two 

different time periods for the same airline and for the same fleet family. For the RC network, we choose 

March 2014 as the calibration set and April 2014 as the validation set. For the three NLC networks, we 

select the first week of one month from each quarter to represent flight schedules through a full year. 

Specifically, we use January 2014 data for calibration and perform validation using datasets from April 

2014, July 2014 and October 2013. Additionally, February 2014 dataset is also used to perform validation 

for a scenario where the calibration and validation datasets are not too far apart in time from each other. 

The intent of this validation is to test the validity of using parameters calibrated using one time period to 

predict crew schedules for another time period for the same airline and the same aircraft family. If the 

results are found to be stable across time periods, then this allows us to use crew scheduling data samples 

from one period to estimate crew schedules for other periods and thus reduces our data requirements if 

we were to estimate the CPDD across long periods of time. 

Let 𝐶𝑖 , 𝑖 ∈ {1, … ,6}, be the Type 𝑖  penalty cost associated with the crew schedule generated by our 

approach, and 𝐶𝑖
𝐴𝑖𝑟𝑙𝑖𝑛𝑒  be the Type 𝑖  penalty cost associated with the corresponding airline-provided 

crew schedule. Then we define the Absolute Percentage Error (APE) as 
|𝐶𝑖− 𝐶𝑖

𝐴𝑖𝑟𝑙𝑖𝑛𝑒|

∑ 𝐶𝑖
𝐴𝑖𝑟𝑙𝑖𝑛𝑒𝑁

𝑖

, where 𝑁 is the total 

number of components of the penalty cost function, i.e., the total number of robustness features. Note 

that this is not a commonly used method of error representation, but is chosen because it offers certain 

advantages for our problem setting. First, the choice of denominator (∑ 𝐶𝑖
𝐴𝑖𝑟𝑙𝑖𝑛𝑒𝑁

𝑖 ) in the APE expression 

guarantees that we do not have issues related to division by zero. Contrast this choice of denominator 

with a more standard 𝐶𝑖
𝐴𝑖𝑟𝑙𝑖𝑛𝑒 term as the denominator, which would have led to division-by-zero issues 

in many cases, such as the Type 3 error for RC network, as presented in Table 3. Second, since we use the 
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same denominator for all features, it is easy and meaningful to compare the percentage errors across the 

different features.  

Tables 4 through 7 list the APEs for each feature and also the average and maximum values across 

features. The columns titled “Before” and “After” list the errors for crew pairing solutions generated using 

uncalibrated and calibrated parameters respectively. Note that as described in Section 5.1, in all cases the 

penalty function evaluation is performed using the calibrated parameters. Looking at the results 

presented in Tables 4 through 7, several observations can be made. Errors are substantially lower in most 

cases after calibration than before. The improvement is especially clear when looking at the average or 

maximum values of the APEs across types. Average and maximum APEs are reduced substantially by the 

calibration process and a reduction is observed across all calibration and validation datasets. In many 

cases the reduction is by one or more orders of magnitudes. The APEs are slightly lower in the out-of-

sample validation datasets compared with the in-sample calibration datasets, especially for the RC 

network. However, the out-of-sample APEs are consistently reduced by the calibration process 

demonstrating the stability and effectiveness of our approach. Moreover, seasonality is not found to play 

a significant role in terms of the errors. The out-of-sample validation errors did not worsen and stayed 

stable as the time between the calibration and validation datasets increased from 1 month (for February) 

to 6 months (for July). The consistently lower error values with the calibrated parameters, as measured 

individually, using averages, or using maximum values, indicate that our approach produces crew pairings 

that are stable across time periods of up to several months. 

Table 4. Cross-Time Period Validation Results: RC 

Data Calibration (Mar) Validation (Apr) 

 Before After Before After  

Type 1 101.6% 7.9% 58.9% 28.8% 

Type 2 2.6% 0.8% 1.9% 0.3% 

Type 3 2.2% 0.2% 1.6% 0.1% 

Type 4 48.9% 2.9% 26.2% 0.2% 

Type 5 0 0 0 0 
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Type 6 5.1% 0.5% 2.9% 0.4% 

Average 26.7% 2.0% 15.3% 5.0% 

Maximum 101.6% 7.9% 58.9% 28.8% 

Table 5. Cross-Time Period Validation Results: NLC-A320 

Data Calibration (Jan) Validation (Feb) Validation (Apr) Validation (Jul) Validation (Oct) 

 Before After Before After Before After Before After Before After 

Type 1 10.8% 0.0% 12.0% 3.1% 9.3% 2.5% 11.3% 2.6% 21.1% 5.5% 

Type 2 0 0 0 0 0 0 0 0 0 0 

Type 3 64.3% 8.9% 59.8% 4.0% 39.2 % 12.9% 40.8% 8.6% 70.9% 11.5% 

Type 4 178.9% 9.5% 228.9% 8.2% 140.3% 31.0% 134.6% 23.1% 299.2% 0.3% 

Type 5 2.6% 0.1% 1.9% 0.7% 3.0% 1.6% 3.2% 2.6% 4.4% 3.3% 

Type 6 13.0% 0.1% 12.0% 1.5% 9.4% 1.9% 8.2% 3.7% 18.9% 5.5% 

Average 44.9% 3.1% 52.4% 2.9% 33.5% 8.3% 33.0% 6.8% 69.1% 4.4% 

Maximum 178.9% 9.5% 228.9% 8.18% 140.3% 31.0% 134.6% 23.1% 299.2% 11.5% 

Table 6. Cross-Time Period Validation Results: NLC-B737 

Data Calibration (Jan) Validation (Feb) Validation (Apr) Validation (Jul) Validation (Oct) 

 Before After Before After Before After Before After Before After 

Type 1  
3.1% 0.5% 3.9% 0.9% 2.0% 0.3% 2.6% 0.9% 3.1% 0.7% 

Type 2 0 0 0 0 0 0 0 0 0 0 

Type 3  88.4% 13.6% 76.3% 7.8% 48.9% 13.4% 68.1% 12.8% 93.8% 6.9% 

Type 4  88.8% 7.4% 86.9% 5.2% 60.7% 10.3% 70.9% 10.5% 100.2% 8.2% 

Type 5  1.1% 0.5% 1.1% 1.0% 2.0% 0.6% 2.3% 0.7% 0.4% 1.1% 

Type 6  35.0% 2.6% 30.2% 14.1% 26.3% 7.4% 28.0% 6.8% 35.3% 18.0% 

Average 36.1% 4.1% 33.1% 4.8% 23.3% 5.3% 28.7% 5.3% 38.8% 5.8% 

Maximum 88.8% 13.6% 86.9% 14.1% 60.7% 13.4% 70.9% 12.8% 100.2% 18.0% 

Table 7. Cross-Time Period Validation Results: NLC-B757 

Data Calibration (Jan) Validation (Feb) Validation (Apr) Validation (Jul) Validation (Oct) 

 Before After Before After Before After Before After Before After 

Type 1 0.5% 8.0% 0.0% 2.9% 0.0% 0.0% 3.7% 0.8% 3.8% 3.8% 

Type 2 19.8% 19.6% 0.0% 0.0% 161.6% 0.0% 16.0% 0.8% 105.5% 10.2% 

Type 3 32.8% 5.4% 14.1% 3.9% 54.7% 0.0% 17.4% 19.8% 20.3% 9.6% 

Type 4 339.9% 49.7% 185.1% 92.0% 1080.8% 25.1% 309.9% 79.1% 321.7% 39.4% 

Type 5 0 0 0 0 0 0 0 0 0 0 

Type 6 0 0 0 0 0 0 0 0 0 0 

Average 65.5% 13.8% 33.2% 16.5% 216.2% 4.2% 57.8% 16.8% 75.2% 10.5% 

Maximum 339.9% 49.7% 185.1% 92.0% 1080.8% 25.1% 209.9% 79.1% 321.7% 39.4% 

Tables 8 through 11 present the cross-validation results where the validation is performed on a dataset 

which belongs to a different airline, a different fleet family, and in some cases, a different time period 

compared with the calibration dataset. This constitutes an important test of our calibration approach 

because realistically we cannot expect crew scheduling samples to be available for all combinations of 
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airlines, fleet types and time periods. Instead, if we are able to access a small crew scheduling sample 

from one airline, for one fleet family, and for one time period, it is desirable to use that sample to calibrate 

parameters of a model that can then be used to generate crew schedules for other airline types, other 

fleet types and/or other time periods. Tables 8 through 11 present these cross-validation results where 

the four chosen combinations of networks and time periods are RC March 2014, NLC-B737 January 2014, 

NLC-B757 January 2014, and NLC-A320 January 2014. In each table, we use the parameter sets obtained 

by calibration over the networks listed in the top row. 

Each table represents results of validation using a single network and time period combination specified 

in the table caption. The intent of this validation is to test whether our parameters calibrated for one 

combination of airline, fleet family and time period still perform well for other combinations of airlines, 

fleet families and time periods. 

Table 8. Validation across Airline, Fleet Family and Time Period for the RC Network for Mar 2014 

Data RC (Calibration) NLC-A320 NLC-B737 NLC-B757 

 Before After Before After Before After Before After 

Type 1 101.6% 7.9% 21.4% 6.7% 6.1% 0.6% 43.2% 1.1% 

Type 2 2.6% 0.8% 22.0% 16.5% 0 0 0.8% 7.5% 

Type 3 2.2% 0.2% 28.8% 11.6% 31.1% 16.8% 18.5% 1.8% 

Type 4 48.9% 2.9% 50.8% 21.1% 26.4% 7.4% 149.5% 51.2% 

Type 5 0 0 0.3% 1.1% 0.4% 2.3% 0  0 

Type 6 5.1% 0.5% 6.5% 1.4% 15.7% 7.7% 0 0 

Average 26.7% 2.1% 21.6% 9.7% 13.3% 5.8% 35.3% 10.3% 

Maximum 101.6% 7.9% 50.8% 21.1% 31.1% 16.8% 149.5% 51.2% 

Table 9. Validation across Airline, Fleet Family and Time Period for the NLC-A320 Network for Jan 2014 

Data NLC-A320 

(Calibration) 

RC NLC-B737 NLC-B757 

 Before After Before After Before After Before After 

Type 1 10.8% 0.0% 36.9% 38.2% 2.4% 0.2% 34.1% 4.8% 

Type 2 0 0 22.0% 16.5% 0 0 6.6% 6.3% 

Type 3 64.3% 8.9% 1.1% 0.0% 52.6% 5.3% 29.7% 0.5% 

Type 4 178.9% 9.5% 85.9% 4.0% 73.6% 3.0% 895.2% 52.4% 

Type 5 2.6% 0.1% 0 0 2.9% 1.7% 0 0 

Type 6 13.0% 0.1% 8.2% 0.6% 25.8% 16.6% 0 0 

Average 44.9% 3.1% 25.7% 9.9% 26.2% 4.5% 160.9% 10.7% 

Maximum 178.9% 9.5% 85.9% 38.2% 73.6% 16.6% 895.2% 52.4% 
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Table 10. Validation across Airline, Fleet Family and Time Period for the NLC-B737 Network for Jan 2014 

Data NLC-B737 

(Calibration) 

RC NLC-A320 NLC-B757 

 Before After Before After Before After Before After 

Type 1 3.1% 0.5% 60.2% 28.9% 17.1% 7.4% 27.6% 2.9% 

Type 2 0 0 7.2% 22.6% 0 0 38.6% 0.3% 

Type 3 88.4% 13.6% 2.6% 0.3% 120.1% 13.4% 37.0% 3.3% 

Type 4 88.8% 7.4% 118.7% 0.2% 242.9% 20.6% 685.7% 80.6% 

Type 5 1.1% 0.5% 0 0 3.5% 3.6% 0 0 

Type 6 35.0% 2.6% 12.1% 5.8% 44.0% 33.8% 0 0 

Average 36.1% 4.1% 33.5% 9.6% 71.3% 13.1% 131.5% 14.5% 

Maximum 88.8% 13.6% 118.7% 28.9% 242.9% 33.8% 685.7% 80.6% 

Table 11. Validation across Airline, Fleet Family and Time Period for the NLC-B757 Network for Jan 2014 

Data NLC-B757 

(Calibration) 

RC NLC-A320 NLC-B737 

 Before After Before After Before After Before After 

Type 1 0.5% 8.0% 21.4% 25.0% 2.5% 2.6% 0.0% 0.0% 

Type 2 19.8% 19.6% 50.4% 19.6% 0 0 0 0 

Type 3 32.8% 5.4% 3.1% 1.4% 69.4% 6.1% 70.4% 6.4% 

Type 4 339.9% 49.7% 87.0% 33.5% 101.5% 16.5% 48.3% 0.1% 

Type 5 0 0 0 0 2.3% 1.8% 3.2% 5.2% 

Type 6 0 0 6.3% 0.9% 5.7% 2.5% 13.9% 4.0% 

Average 65.5% 13.8% 28.0% 13.4% 30.2% 4.9% 22.6% 2.6% 

Maximum 339.9% 49.7% 87.0% 33.5% 101.5% 16.5% 70.4% 6.4% 

Tables 8 through 11 show that the average and maximum errors (APEs) after calibration are much smaller 

when compared to those before calibration for all combinations of the calibration and validation datasets. 

However, when compared with the calibration errors, the validation errors are typically larger. This is 

especially obvious in Table 8 where the calibration is performed using the RC network for March 2014 and 

the validation is performed using the three NLC networks for January 2014. This seems to suggest that the 

three NLC networks are more “similar” to each other in terms of their calibrated parameters than the 

similarity between NLC and RC networks. This is not surprising given that the RC network exhibits many 

differences in the network structure, schedules and flight durations when compared with the three NLC 

networks. Moreover, Tables 9 and 10 together suggest that the parameters for the NLC-A320 and NLC-

B737 networks are especially similar to each other as reflected by their low cross-validation errors. This 

phenomenon can also be explained by the fact that A320 and B737 aircraft families are similar to each 
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other. They are both single aisle, twin-engine aircraft with similar seating capacity and range capabilities 

causing their flight networks to also look similar to each other.  

Thus Tables 8 through 11 provide several interesting insights. First, they demonstrate that the out-of-

sample validation errors are considerably lower using the calibrated than the uncalibrated parameters 

even when the calibration was performed using a crew scheduling sample from a different airline type 

and/or fleet family. However, we also note that the error reduction by using the calibrated rather than 

the uncalibrated parameters is greater when the calibration and validation datasets are more similar, in 

terms of airline type and fleet family. This suggests that, on the one hand, when estimating crew schedules 

for a given flight network, it is advisable to use a parameter set that has been calibrated using a flight 

network that shares as many of its attributes as possible. On the other hand though, using any set of 

calibrated parameters is still likely to be considerably better than using uncalibrated parameters. Even if 

the calibrated parameters are from a different time period, different airline and/or different fleet family, 

they improve the accuracy considerably compared with the uncalibrated parameters, i.e., compared with 

solving the deterministic crew scheduling problem. Thus, while it is advisable and beneficial to have a wide 

variety of airline crew schedule samples, our calibration approach enhances the degree of similarity of the 

generated crew pairing solution with the actual pairing solution used by the airline even when crew 

sampling data is relatively scarce. 

5.3 Validating Crew Pairing Distributions 

In this section, we perform additional validation of our results by directly comparing the distributions of 

the features that affect the crew-propagated delays and disruptions (CPDD) for our results against the 

distributions of those features for the airline-provided crew pairing solutions. Our goal is to ensure that 

the distributions of the features affecting the CPDD are similar between our solution and the airline-

provided solution so that the two crew pairing solutions possess similar CPDD potential. This validation 
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approach is similar in spirit to that used by Barnhart, Fearing and Vaze (2014) to compare the distributions 

of features of passenger itinerary flows. 

We consider the following distributions for validation purposes. 

1. Distribution of the flying time in a duty. 

2. Distribution of the elapsed time in a duty. 

3. Distribution of the scheduled sit times. 

4. Distribution of the scheduled rest times. 

These correspond to Features 1 through 4 described in Section 2.2. Chi-squire statistic and the 

Kolmogorov-Smirnov statistic are two commonly used metrics for comparing two distributions to each 

other. The lower the values of these statistics, the more similar are the two distributions. Table 12 

compares the distributions of these four features. For the RC network, the calibration is performed using 

the March 2014 dataset and the validation is performed using the April 2014 dataset while for the three 

NLC networks, the calibration is performed using the January 2014 dataset and the validation is performed 

using the February 2014 dataset. Note that we do not present the rest time distributions for the NLC-A320 

and NLC-B737 networks for the reasons mentioned in Section 5.1. These results in Table 12 further 

reinforce our conclusion that the calibrated models generate crew-pairing solutions that are very similar 

to those provided by the airline in terms of the distributions of the CPDD potential, when tested on both 

in-sample and out-of-sample datasets. In almost all cases, the calibrated parameters yield a better fit to 

real-world distributions compared with the uncalibrated ones and in many cases the improvement is 

large.  

Table 12.  Validating Distributions of Crew Pairing Solution Features 

Dataset Feature Chi-Square Kolmogorov-Smirnov 

Before After Before After 
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Statistic p-value Statistic p-value Statistic p-value Statistic p-value 

RC, Calibration (March 

2014) 

Flying Time 48.86 0 0.15 0.9852 0.67 0.03 0.33 >0.2 

Elapsed Time 94.19 0 36.22 0 0.40 >0.2 0.20 >0.2 

Sit Time 89.67 0 106.84 0 0.50 0.18 0.50 0.18 

Rest Time 6.95 0.0735 1.27 0.7363 0.33 >0.2 0.33 >0.2 

RC, Validation (April 

2014) 

Flying Time 40.55 0 7.26 0.0641 0.67 0.03 0.33 >0.2 

Elapsed Time 83.15 0 3.58 0.3105 0.40 >0.2 0.20 >0.2 

Sit Time 157.16 0 7.64 0.89 0.75 <0.01 0.50 0.12 

Rest Time 6.63 0.0847 17.74 0.0005 0.33 >0.2 0.33 >0.2 

NLC-A320, Calibration 

(January 2014)  

Flying Time 73.47 0 1.25 0.741 0.75 <0.01 0.25 >0.2 

Elapsed Time 171.22 0 1.32 0.7244 0.75 <0.01 0.25 >0.2 

Sit Time 42.13 0 13.3 0.0099 0.40 >0.2 0.20 >0.2 

NLC-A320, Validation 

(February 2014) 

Flying Time 60.36 0 8.95 0.03 0.75 <0.01 0.25 >0.2 

Elapsed Time 160.34 0 10.75 0.0132 0.50 0.17 0.25 >0.2 

Sit Time 55.16 0 31.90 0 0.40 >0.2 0.20 >0.2 

NLC-B737, Calibration 

(January 2014) 

Flying Time 281.96 0 49.77 0 0.67 0.03 0.33 >0.2 

Elapsed Time 284.30 0 21.63 0.0001 0.60 0.07 0.40 >0.2 

Sit Time 81.07 0 27.98 0 0.75 <0.01 0.50 0.12 

NLC-B737, Validation 

(February 2014) 

Flying Time 113.51 0 20.09 0.0002 0.50 0.17 0.17 >0.2 

Elapsed Time 262.42 0 11.15 0.0109 0.60 0.07 0.20 >0.2 

Sit Time 54.66 0 33.15 0 0.25 >0.2 0.25 >0.2 

NLC-B757, Calibration 

(January 2014) 

 

Flying Time 3.45 0.3273 0 1 0.25 >0.2 0 >0.2 

Elapsed Time 4.85 0.1831 3.40 0.334 0.40 >0.2 0.20 >0.2 

Sit Time 3.67 0.4525 0.37 0.9849 0.50 0.12 0.25 >0.2 

Rest Time 3.92 0.2702 9.23 0.0264 0.33 >0.2 0.33 >0.2 

NLC-B757, Validation 

(February 2014) 

Flying Time 2.38 0.4974 2.31 0.5106 0.25 >0.2 0.25 >0.2 

Elapsed Time 3.32 0.3449 2.23 0.5261 0.20 >0.2 0.20 >0.2 

Sit Time 0.22 0.9944 2.25 0.6899 0.25 >0.2 0.25 >0.2 

Rest Time 7.10 0.0688 2.98 0.3947 0.33 >0.2 0.33 >0.2 

 

6 Conclusion and Future Research 

In this paper, we developed an approach to generate crew pairing solutions that are similar to the actual 

crew pairing solutions used by the airlines in the real world, in terms of their potential for the crew-

propagated delays and disruptions (CPDD). As mentioned in Section 1, this work has at least three main 

types of applications. First, it is the first step toward estimating the extent to which delays and disruptions 

propagate through crew connections. Second, it allows us to assess and compare the effectiveness of 

various operational recovery strategies used by the airlines. Finally, it allows us to evaluate and compare 

the full impact of various candidate strategies for congestion and delay mitigation that are being 
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considered by the airlines, airports, air traffic control system, and the government. In following two 

paragraphs, we briefly describe how each of these objectives can be achieved using our results.  

Table 2 provides four different sets of parameters representing four different airline networks. The robust 

crew pairing optimization model (8-10) can be solved for each of these four sets of parameters to come 

up with an estimated crew schedule for any given airline network of interest. As our results in Section 5 

indicate, when picking the right set of parameters, it is advisable to choose a set that corresponds to a 

network which is the most similar (in terms of the airline type, fleet type and time period) to the network 

of interest. However, no matter which parameter set is picked, using calibrated parameters gives a far 

better fit than solving the deterministic crew pairing model in all cases. Alternatively, the calibration 

approach described in Sections 3 and 4 could be used to generate more suitable parameters in case a 

better-matching airline crew schedule sample is available. 

Once the crew schedules are estimated, they can be used to estimate the CPDD. Note that, for accurately 

estimating delays in a historical dataset, some knowledge or assumption regarding the recovery strategies 

used by the airlines is necessary. For a given set of root delays and for a given operational recovery 

strategy, our crew schedules can be used to estimate the historical CPDD values in a relatively 

straightforward manner. Note that, in all cases, total propagated delays and disruptions should be 

measured by accounting for the propagation through aircraft connections as well as crew connections. 

However, the aircraft connections are publicly available and hence are not a bottleneck in this overall 

process. 

It would be the first paper to use the inverse of the robust crew pairing generation problem in order to 

gain insights into the extent of the robustness of the real-world airline crew scheduling practices. The 

problem was formulated as one of learning the parameters of the robust optimization objective function 

using real-world airline crew scheduling samples. A heuristic solution approach was developed and 
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implemented. It involved solving the forward problem (the robust crew pairing problem) repeatedly to 

minimize a similarity measure between the solution of the robust crew pairing problem and the actual 

airline crew schedule samples by identifying the optimal set of objective function parameters. The forward 

problem minimizes the sum of the planned cost and the penalty costs which penalize the crew pairings 

for six different features that make them vulnerable to the propagation of delays and disruptions. A 

sequence of exact methods and heuristic ideas was used to solve this robust crew pairing problem to near-

optimality. This allowed the overall parameter calibration problem to be solved in a reasonable amount 

of time. 

Several new insights were obtained into the airline crew pairing generation process. First, compared with 

the crew pairings obtained by solving the deterministic crew pairing problem the calibrated parameters 

led to crew pairings that are considerably closer to the actual airline crew schedules in all our experiments. 

In most cases, the accuracy improvement was substantial. This suggests that airlines do take into account 

robustness or the potential for propagation of delays and disruptions when creating their crew schedules. 

Furthermore, we found that the crew pairings calibrated using four different airline networks performed 

similar to each other, and much better than the deterministic crew pairing solutions, in terms of their 

closeness to the actual crew schedules, even when the calibration and evaluation is not conducted on the 

same network. This suggests that the calibrated parameters are relatively stable. Thus, even in cases 

where the data available for model training is for a network somewhat dissimilar to the one of interest, it 

is better to use the calibrated parameters than the uncalibrated ones. However, for maximizing estimation 

accuracy, whenever possible, it advisable to use parameters calibrated with a network that is as similar to 

the one of interest as possible, in terms of airline type, fleet type and time period. Finally, this paper 

presented, for the first time in the literature, a measure of the tradeoff as perceived by the airlines 

between the crew salary costs and the costs of the crew-propagated delays and disruptions (CPDD) as 

reflected by the calibrated robust crew pairing objective functions. Across the four networks, the ratio of 



41 

 

the penalty costs (representing the costs of the CPDD) and the crew salary costs was found to lie between 

0.5% and 4%. Note that this is inferred based on the crew pairings used by the airlines and not based on 

the actual costs of these delays and disruptions. 

Moreover, these crew pairing estimates do give a starting point to estimate the CPDD, the important next 

step toward accurately estimating historical delay propagation is to develop an understanding of the crew 

recovery strategies used by the airlines in the real world. Once we have access to a historical sample of 

actual crew recovery actions, a framework similar to the one developed in this paper could be used to 

learn the airline crew recovery optimization process as well. This will be the next step in our research 

project. 

Appendix A 

This appendix details the two-step approach used to solve the pricing problem to optimality. 

Algorithm A: This is a dominance algorithm with an exact implementation, similar to that described by 

Irnich and Desaulniers (2005), wherein only a path starting with the same crew base can dominate another 

path. 

Algorithm B: This is a dominance algorithm with an implementation similar to that described by Irnich 

and Desaulniers (2005) except that a path starting with either the same or a different crew base can 

dominate another path. 

The exact set of labels used by Algorithm A in our robust crew pairing implementation is as follows. Note 

that Algorithm B uses all but the last label listed below. 

1. The number of duties covered so far by the path. 

2. The total flying time so far in the current duty of the path. 
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3. The total elapsed time so far in the current duty of the path. 

4. A constant multiple (𝜁) of the total elapsed time so far in the path minus the sum of the dual 

contributions of all flights included so far in the path. 

5. The total flying time so far in the current duty plus the sum of the costs of the previous duties in the 

path minus the sum of the dual contributions of all flights included so far in the path. 

6. The minimum guaranteed pay of the current duty plus the sum of the costs of the previous duties in 

the path minus the sum of the dual contributions of all flights included so far in the path. 

7. A constant multiple of (𝜀) of the total elapsed time so far in the current duty plus the sum of the costs 

of the previous duties in the path minus the sum of the dual contributions of all flights included so far in 

the path. 

8. Crew base (the starting point) of the path. 
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