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Abstract

We propose a novel methodology to estimate demand in advance purchase markets where
demand is uncertain and the willingness to pay of arriving consumers changes over time. We es-
timate the distribution of stochastic consumer arrivals as well as consumer preferences by com-
bining information on consumer search activity with product-level sales. The discrete choice
model allows for flexible discrete unobserved heterogeneity, endogenous prices, and accommo-
dates zero sale observations at the product level. We apply the method to rich data provided by
a large international air carrier based in the United States. The model fits the data well, even
in periods in which sales are infrequently observed. We find that there is a significant increase
in willingness to pay toward the departure date as an increasing number of price insensitive
consumers look for tickets.
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1 Introduction

Granular data often pose challenges for existing demand modeling techniques due to the presence

of zero sales observations. Logit-style demand systems are popular and easy to compute, but widely

used estimation methodologies typically require zero sale observations to be dropped. Simply re-

moving the zeros creates a selections bias in the demand estimates, and aggregating the data may

not be feasible in many applications. In advance purchase markets—such as in the airline, hotel, and

entertainment industries—these zero-sales observations may arise for a particular reason—demand

is stochastic. In the extreme case, no consumers may consider purchasing on a given day. On the

other hand, consumers who do in fact consider making a purchase may end up opting not to do so

if the current price is sufficiently high.

Distinguishing between low demand (few consumers entering the market) and elastic demand

(few consumers opting to purchase) is essential for optimizing prices and product availability. For

example, understating the amount of uncertainty in demand in a market will lead to an overstatement

in estimates of consumer price insensitivity. Because observed demand is an outcome that depends

on both preferences and uncertainty, it is difficult to ascertain the role either plays in markets based

on particular realizations of demand alone.

In this paper, we propose a new demand methodology to investigate product-level demand that

simultaneously estimates the magnitude of stochastic demand along with consumer preferences. Al-

though we tailor our specification to the airline industry, the method is appropriate for many settings

in which zero sale observations are observed and the researcher has access to both search and sales

data. The method addresses sparse sales at granular levels without requiring data to be aggregated

along common dimensions, such as over products or time. Importantly, the method recovers the

stochastic process that causes variation in observed product sales, controlling for consumer prefer-

ences. This is especially important in the airline context, because estimates of the arrival process can

be used as inputs for forecasting models and can be incorporated into demand learning frameworks.

The classic problem of missing "no purchase" data is well known in operations research. His-

torical sales data is likely insufficient to estimate demand when sales are sufficiently sparse, since

these data do not contain the finite number of consumers who opted to not purchase. In such con-

texts, empirical shares (sales ÷ market size) are random variables and we cannot appeal to the law

of large numbers when the number of purchase opportunities is small. In order to estimate con-
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sumer preferences when demand is stochastic, it is essential to control for the variation in sales that

are driven by stochastic arrivals. Much of the previous work that models stochastic demand—for

example Gallego and Van Ryzin (1994), Talluri and Van Ryzin (2004), and Vulcano, Van Ryzin,

and Ratliff (2012), either assumes the arrival rate or notes the difficulty in separating elastic demand

from low arrivals. Moreover, recent advancements in the estimation of nonparametric demand sys-

tems assume that observed product shares represent true purchase probabilities (Compiani, 2019;

Tebaldi, Torgovitsky, and Yang, 2019). Although these methods produce estimates of very flexible

demand systems, they would necessarily lead to incorrect inferences of consumer preferences when

demand is stochastic. For example, few sales would be rationalized through elastic demand, when,

in fact, few sales may occur because few consumers are interested in buying.

Whereas demand is typically estimated solely with historical sales data, our approach incorpo-

rates consumer search activity to inform the magnitude of stochastic demand. By using search data

to measure the number of "no purchases", we estimate how demand uncertainty varies over time.

This has been shown to be an important consideration for optimal pricing (Bitran and Mondschein,

1997; Bitran, Caldentey, and Mondschein, 1998; Zhao and Zheng, 2000). Moreover, our approach

also allows for a rich demand specification. The model scales well and is able to produce granu-

lar demand estimates—for example, we estimate demand for flights by day-of-week and time-of-

day. Practitioners may find the method appropriate for estimating differences in willingness-to-pay

across product lines.

The demand model combines elements of stochastic demand models in operations research

with random coefficients demand specifications widely used in empirical industrial organization

and quantitative marketing research. Following work in operations (Talluri and Van Ryzin, 2004;

Vulcano, van Ryzin, and Chaar, 2010), we consider a discrete time demand model in which con-

sumer arrivals are modeled via a Poisson distribution. We allow for time-varying arrival parameters

and estimate them using search data. We allow for unobserved preference heterogeneity through

a discrete random coefficients specification, following Berry, Carnall, and Spiller (1996). Incorpo-

rating time-varying consumer heterogeneity is important both for accurately characterizing demand

and for appropriately applying revenue management methodologies. Arriving consumers belong

to one of two types, which we label as "business" or "leisure" travelers. We allow the fraction on

consumer types to change over time in a flexible and unrestricted way. This allows us to mea-
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sure changes in the composition of arriving consumers toward the departure date. We incorporate

a number of restrictions common to the literature, including that arriving consumers do not de-

lay purchase for potential fare decreases. In addition, we assume consumers solve straightforward

discrete choice utility maximization problems. The structure of the demand model is similar to

Williams (2020). However, our method does not use supply-side conditions for estimation and we

incorporate a flight-level unobservable that is potentially correlated with price.

Information on consumer search behavior is used to address the presence of zero sale observa-

tions in daily flight demand. As noted in Berry, Linton, and Pakes (2004), zero sales are problem-

atic because these observations must be dropped from analysis, and this leads to a selection bias in

the demand estimates. Recent methodologies have been proposed to address this issue, including

adjusting zero sales off the bound (Gandhi, Lu, and Shi, 2017) and modeling the occurrence as

stemming from incomplete product consideration (Dubé, Hortaçsu, and Joo, 2020). In Quan and

Williams (2018), zeros are rationalized by modeling the finite multinomial distribution that gener-

ates observed purchases; however, the presence of zeros in this application are driven by purchase

opportunities being small relative to the size of the choice set. In airline markets, zeros are driven by

the extensive margin of search—whether any product is considered—rather than variation in which

subsets of products are considered. We explain sampling variation in sales as being driven by the

presence of stochastic consumer arrivals. Importantly, our approach differs from the prior literature

in that we explicitly model the underlying process that generates sparsity in observed sales.

We use a Bayesian Markov Chain Monte Carlo approach for estimation. We extend the methods

of Jiang, Manchanda, and Rossi (2009) and Rossi, Allenby, and McCulloch (2012) by developing

a Gibbs sampling routine for Poisson demand models with random-effects. A major advantage of

this approach is that it allows us to consider randomness in sales from two sources—arrivals and

random-effects in utility. This allows us to estimate a rich demand specification with price endo-

geneity while simultaneously rationalizing the observed sparsity of sales. Estimation via MCMC

provides computational advantages. By searching for parameter values via simulation instead of

optimization, we sidestep solving a complex non-linear system.1

We first demonstrate the performance of the method using simulation studies. We then apply

1The existence of priors helps identification by adding concavity to posteriors. This improves convergence of the
algorithm relative to non-linear optimization techniques which are known to get “stuck” in flat regions of the objective
function.

3



our proposed methodology to granular data provided by a large international air carrier based in

the United States. In addition to detailed bookings, prices, and product characteristics, we derive a

measure of aggregate search activity by counting the number of consumers who initiate bookings

requests for relevant itineraries on the air carrier’s website and mobile application. Although we

observe all bookings, do we not observe all relevant searches. In particular, we do not observe

searches for tickets purchased through certain travel agencies. We propose a modification to our

empirical procedure to account for searches made via indirect booking channels.

In our empirical application, we estimate demand for select origin-destination pairs where the

carrier offers several flight frequencies a day. We estimate time-of-day and departure date pref-

erences. In addition, we allow the rate of arrivals to depend on the departure date and time until

departure. We find that consumers who arrive close to departure are less price sensitive than the

consumers who arrive well in advance of the departure date. Our reported demand elasticities range

between -3.0 and -1.1, depending on the departure date, departure time, and the number of days

before departure. Our flexible fixed effects specification captures systematic features of the markets

studied, including higher demand for specific days of the week and a distaste for early morning

flights.

The rest of the paper is organized as follows. In Section 2, we introduce the consumer demand

model. In Section 3, we outline the Bayesian estimation approach. In Section 4, we present a Monte

Carlo study to demonstrate the performance of the estimator. In Section 5, we introduce the data

and estimate demand in select flight markets. The conclusion follows.

2 Model of Demand

We consider the demand for flights for a particular origin-destination pair departing on a particular

departure date d . We focus on consumers booking nonstop itineraries from a single air carrier

and abstract from potential correlations in demand across alternative connecting flight options and

alternative departure dates. Time is discrete. The definition of a market is an origin-destination

(r ), departure date (d ), and day before departure (t ) tuple. The booking horizon for each flight j

leaving on date d is t ∈ {0, ..., T }. The time index counts down towards zero; the first period of sale

is t = T , and the flight departs when the time index equals zero. In each of the sequential markets t ,
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all consumers face a single price for each flight j .2 Arriving consumers simultaneously choose the

flights that maximize their individual utilities. If demand exceeds remaining capacity for any flight

offered, we incorporate the rationing assumptions noted below.

An integer number of consumers arrive according to a stochastic process (Ar,t ,d ) that is indepen-

dent of consumer demand. We formalize the arrival process in Section 2.2. Each consumer solves a

discrete choice utility maximization problem, described in detail in Section 2.1. Consumers choose

from the set of nonstop flights leaving on the focal departure date, which we denote by J (r, t , d ),

and the outside option. Each consumer purchases a single ticket on one of flight options or chooses

the outside option, which corresponds to not traveling (via this airline). We denote this option by

j = 0. Flights are imperfect substitutes, and we allow for product-specific preferences. We assume

arriving consumers do not substitute across alternative departure dates d ′ or wait to purchase on an

alternative day before departure t ′. For notational parsimony, we suppress the r subscript in the

notation; all parameters are origin-destination specific.

Because capacity is limited, it may be the case that more consumers wish to travel than there

are seats remaining. We incorporate two assumptions that greatly simplify the demand system.

Note that these assumptions are only binding in the period in which a flight actually sells out (only

5.4 percent of flights sell out in advance of the departure date). Denote C j ,t ,d to be the remaining

capacity for flight j leaving on date d , t days before departure. First, we assume that consumers

are not forward looking and do not strategically choose flights based on remaining capacity, C j ,t ,d .

This avoids the complication that consumers may choose a less preferred option in order to increase

the chances of securing a seat. Second, we assume that when demand exceeds remaining capacity

for a particular flight, consumers who chose that flight are randomly shuffled; the first C j ,t ,d are

selected and the rest receive the outside option. We highlight the importance of this assumption in

the following subsection.

2.1 Utility Specification

Arriving consumers have heterogeneous preferences, and we adopt a random coefficients demand

model that is commonly applied to the airline setting. Following Berry, Carnall, and Spiller (1996),

2It is possible for a fare class to sell out mid-day. If that occurs, late-arriving consumers would face a higher price. In
our data, this occurs very rarely; we abstract away from within-day price changes.
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we assume consumers are one of two types, corresponding to leisure (L) travelers and business (B )

travelers. An individual consumer is denoted as i and her consumer type is denoted by ` ∈ {B , L}.

These types need not correspond exactly to the lay definition of leisure and business travel; instead

they capture discrete unobserved heterogeneity. The probability that an arriving consumer is a

business traveler is equal to γt .

We assume the indirect utilities are linear in product characteristics and given by

ui , j ,t ,d =







X j ,t ,dβ −pj ,t ,dα`(i )+ξ j ,t ,d + εi , j ,t ,d , j ∈ J (t , d )

εi ,0,t ,d , j = 0
.

In the specification, X j ,t ,d denote product characteristics other than price pj ,t ,d . Consumer prefer-

ences over product characteristics and price are denoted by
�

β ,α`
�

`∈{B ,L}. For notational parsimony,

we commonly refer to the collection {αB ,αL} as α. Our specification allows for heterogeneity in

preferences on price, but we assume that consumers have common preferences for other product

characteristics. The term ξ j ,t ,d denotes an unobserved (to the econometrician) product quality that

is allowed to be correlated with price. The term εi , j ,t ,d is an unobserved random component of util-

ity and is assumed to be distributed according to a type-1 extreme value distribution. All consumers

solve a straightforward utility maximization problem; consumer i chooses flight j if, and only if,

ui , j ,t ,d ≥ ui , j ′,d ,t , ∀ j ′ ∈ J ∪{0}.

The distributional assumption on the idiosyncratic error term leads to analytical expressions for

the individual choice probabilities of consumers (Berry, Carnall, and Spiller, 1996). In particular,

the probability that consumer i wants to purchase a ticket on flight j is equal to

s i
j ,t ,d =

exp
�

X j ,t ,dβ −pj ,t ,dα`(i )+ξ j ,t ,d

�

1+
∑

k∈J (t ,d ) exp
�

Xk ,t ,dβ −pk ,t ,dα`(i )+ξk ,t ,d

� .

Since consumers are one of two types, we define s L
j ,t ,d be the conditional choice probability for a

leisure consumer (and s B
j ,t ,d for a business consumer). Integrating over consumer types, we have

s j ,t ,d = γt s B
j ,t ,d + (1−γt )s

L
j ,t ,d .
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Although s (·) has an analytical form, there is no analytic inversion to recover ξ. However, since

we can write the analytic form of s (·) as a function of ξ, we write this function conditional on the

demand parameters to emphasize that the ξs are the unobserved random effects in the model. These

random effects ξ function as residuals, explaining the components of demand unobserved to the

econometrician that still influence the purchasing decision. These may include advertisements by

the airline or conferences and events that yield higher demand for particular departure dates. Any

distribution assumed on ξ implies a distribution of the shares. This will later be used to determine

the likelihood of sampled shares. We denote this relationship by f (·),

s j ,t ,d = f
�

ξ j ,t ,d ,β ,α,γ |X j ,t ,d

�

.

The market shares determine the probability of an arriving customer purchasing, but the sparsity

of observed sales forces us to model shares as unobserved. That is, we cannot simply average

observed sales and equate to market shares because zero market shares can be due to zero consumer

arrivals or no arriving consumers wanting to purchase. Observed sales in the data are q j ,t ,d , which

are not only a function of the product shares, but also the number of people that arrive in each time

period. This is important because in periods with low arrivals, the probability of q j ,t ,d = 0 is quite

high, but the probability of s j ,t ,d = 0 is never equal to zero. Thus, when we observe few arrivals, we

must properly account for the sampling variation to be expected in sales quantities.

Finally, we allow ξ, the unobserved component of demand, to be correlated with price. We

control for this endogeneity with traditional price instruments. Instrumental variables are correlated

with price but unrelated to per-period demand shocks. Our treatment of ξ allows for a rich level

of price endogeneity and maintains the interpretation of unobservable demand determinants as in

previous demand estimation methodologies (Berry, 1994; Berry, Levinsohn, and Pakes, 1995).

2.2 Stochastic Arrivals

We assume consumer arrivals follow a Poisson distribution with rate λt ,d . Note that these rates are

unobserved to the econometrician, as each rate corresponds to a single observation (the data are at

the t , d level and one cannot estimate the rate of a Poisson distribution with a single observation).

We will place additional parametric assumptions on the Poisson rates that allow for identification
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in the following section. Search and purchase data inform consumer arrivals, however, it may be

that some searches are unobserved. For example, a consumer who searches and purchases through a

travel agency will result in a sale, but no search activity will be recorded on the air carrier’s website.

To account for a fraction of observed searches, we introduce an exogenous, fixed-proportion scaling

parameter ζ. Implicitly, we assume that consumers who search and purchase via other channels

have the same distribution of preferences.3 It follows that

At ,d ∼ Poisson
�

λt ,d ·ζ
�

.

Three assumptions allow us to construct analytic expressions for demand: arrivals are inde-

pendent of preferences; consumers have no knowledge of remaining capacity; consumers solve the

above utility maximization problems. In situations in which a flight is observed to sell out, capacity

is randomly rationed: consumers are randomly ordered, the first C j ,t ,d are selected to travel, and the

remaining consumers receive the outside option. With these assumptions, conditional on prices and

product characteristics, demand for each flight j is distributed according to a Poisson distribution.

Specifically, demand is distributed

q̃ j ,t ,d ∼ Poisson
�

λt ,d · s j ,t ,d

�

.

Importantly, the demand for flight j is independent of the demand for flight j ′, conditional on X t ,d

and pt ,d . We denote q j ,t ,d to be the realized demand for flight j ; it is equal to

q j ,t ,d =min
¦

q̃ j ,t ,d , C j ,t ,d

©

.

3 Estimation Approach

In this section, we discuss how we use search data to separate consumer arrivals from preferences

as well as a Bayesian procedure to estimate the demand model. We adopt a Bayesian approach

to demand estimation that builds upon existing discrete choice demand methodologies (Rossi and

Allenby, 1993; Jiang, Manchanda, and Rossi, 2009; Rossi, Allenby, and McCulloch, 2012).

3We conduct robustness to our assignment of ζ.
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3.1 Using search information to separate arrivals from preferences

In our model, consumers may arrive infrequently and in small numbers—leading to many zero

shares. Thus, we cannot treat shares as fixed and appeal to a law of large numbers in the number of

purchasing opportunities. If we treated shares as fixed, observing few sales would lead us to believe

that demand is elastic. However, if the number of consumer arrivals is also small, we would expect

to see few, if any, sales in a given period. We solve the issue of missing "no purchase" data by

directly measuring the magnitude of stochastic demand. We do so by using search data to inform

the arrival process.

Although the estimation procedure described below jointly estimates arrivals and preferences,

identification of the model parameters come from distinct data series. The arrival process is esti-

mated from consumer search data. This is similar to a Poisson regression model in that the arrival

rates correspond to regression coefficients of search counts on a vector of control variables. With

these estimates, we explicitly model the probability of observing various sales quantities. For ex-

ample, consider a search series of mostly zeros and ones. Our model would estimate a low arrival

rate. Also suppose that sales also are mostly zeros and ones, with more ones than zeros. The model

then estimates preferences, given the arrival rates, based on the probability distribution of sales.

Because the arrival rates are low and the shares are relatively high in this example, we would infer

that consumers have inelastic demands.

Estimation of the full model differs in two key ways. First, the full model contains an unob-

servable component of demand that is potentially correlated with price. We assume a particular

correlation structure between this demand shock and price. We address price endogeneity with in-

strumental variables; in our empirical application, we use cost shifters and variables that proxy for

the opportunity cost of capacity. Second, the full model also has random coefficients that capture

unobserved heterogeneity in consumer preferences. We estimate the price coefficient and the prob-

ability of each consumer type based on the distribution of sales, conditional on prices and the arrival

rates. For example, suppose the arrival rates are constant over time. If prices rise substantially and

the purchasing rate stays constant, the model will infer that later arrivals are less price sensitive. Our

empirical approach matches the distribution of sales to predicted model sales, given the estimates

of the arrival process.
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3.2 Estimation Procedure

We use a Bayesian approach to demand estimation. The Bayesian approach has a some benefits

relative to traditional approaches to demand estimation, specifically, relative to using linear gener-

alized method of moments (GMM) in Berry (1994) and Berry, Levinsohn, and Pakes (1995). First,

our model is nonlinear due to modeling demand as a Poisson distribution. The Bayesian approach

removes the need to solve a series of nonlinear optimality conditions. Second, we have found that

the Bayesian approach scales well. This allows us to accommodate rich arrival process covariates

as well as many fixed effects in the utility specification.

In the Bayesian approach, we start with a prior distribution, p (θ ), on consumer arrivals and

preferences. We then build up posterior distributions, p (θ |data), by constructing the likelihood of

the model—that is,

p (θ |data)∝ p (data |θ )p (θ ).

The output of the demand estimation procedure are the posterior distributions, conditional on the

historical data observed.

To sample from the posterior distributions, we use a hybrid-Gibbs sampler. This iterates through

all the parameters of the model. In each step, we find the marginal distribution of the parameter

of interest holding all others constant. We use conjugate prior distributions whenever possible to

simplify drawing from the posterior distribution. When conjugate priors are not available, we use

the Metropolis-Hastings algorithm to draw from the posterior.

Estimation is split into several distinct parts: arrivals, shares, demand parameters, and the price

endogeneity parameters. Arrival parameters allow us to rationalize zero sale observations; share

draws allow us to use traditional demand analysis for the preference parameters; and the price en-

dogeneity parameters allow for price to be correlated with the unobserved components of demand.4

In the following subsections, we discuss each step of the sampler.

4We start estimation by initializing the first draws from parameter and share distributions. We initialize the arrival
rates using a Poisson regression of the search data against both departure dates and day before departure. Shares are
initialized as purchases divided by the observed searches. The remaining demand parameters are initialized following
Berry (1994). Given shares, we assign γt = .5 and then invert the demand system to recover mean utilities. We set the
initial β based on the output of the instrumental variables regression of mean utilities on demand covariates.
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3.2.1 Updating arrivals, λ

To update consumer arrival rates, λ, we use both the search and the quantity data. The likelihood

is the joint probability of seeing these outcomes (At ,d and q j ,t ,d ), taking s j ,t ,d as given. Note that

we only have a single arrival observation, At ,d , to make inference about each arrival rate λt ,d .

We cannot estimate this level of arrival rates from a single observation. Thus, we place additional

restrictions on the arrival process. We allow λ to vary between day of departure and days before

departure without imposing a covariance structure between different λt ,d s. We assume

λt ,d = exp(θt +θd ).

This allows for the search data from the same departure day to be relevant for other days of departure

and reduces the complexity of the state space.5

For each pair t , d where capacity does not bind, we can construct the likelihood of arrivals

based on
q j ,t ,d ∼ Poisson(λt ,d · s j ,t ,d ),

At ,d ∼ Poisson(λt ,d ·ζ).
(1)

However, it may be the case that capacity is binding for a particular flight j at time (t , d ). When

this occurs, we observe a right-censored estimate of the true number of individuals that wished to

purchase. That is, for a given capacity C j ,t ,d ,

q j ,t ,d =min
¦

q̃ j ,t ,d , C j ,t ,d

©

,

q̃ j ,t ,d ∼ Poisson(λt ,d · s j ,t ,d ),

At ,d ∼ Poisson(λt ,d ·ζ).

(2)

We draw the parameters θt and θd sequentially according to a Metropolis-Hastings step using

a candidate normal distribution to sample. To construct the likelihood given candidate values of θt

and θd , we account for the censoring in quantity. When q j ,t ,d is not equal to the remaining capacity

of the plane, the likelihood contribution of from quantities is the probability mass function of the

5Within each route, this amounts to restricting the shape of arrivals towards departure to evolve the same way for all
departure dates. Each departure date shifts the shape by the multiplier exp(θd ). This is not restrictive in our context. In
other contexts, alternative parameterizations may be more appropriate.
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Poisson distribution evaluated at q j ,t ,d : fx (q j ,t ,d |θt ,θd ), based on Equation 1. When the capacity

constraint is observed to bind, the contribution is instead 1− Fx (q j ,t ,d |θt ,θd ), based on Equation 2.

3.2.2 Updating shares, s (·)

We treat product shares as unobserved because we do not appeal to a law of large numbers on market

sizes. The posterior distribution of shares is shaped by both the quantity data and the demand

parameters (including the random effect ξ). Randomness factors into product shares two ways.

First, quantities are impacted by the sampling of the arrivals. Second, shares are influenced by the

the random effect of the unobserved components of demand, ξ.

The likelihood of the shares is constructed from data on quantities (and product characteristics),

given our estimates of the arrival process. We also incorporate capacity constraints, which impact

quantities, into the likelihood for shares. For flights that are not observed to sell out, we appeal to

Equation 1 and construct the likelihood of seeing a particular quantity q sold based on

q j ,t ,d ∼ Poisson
�

λt ,d · s j ,t ,d

�

For flights in which the capacity constraint binds, we again evaluate the expressions in Equation 2:

q j ,t ,d =min
¦

q̃ j ,t ,d , C j ,t ,d

©

, where q̃ j ,t ,d ∼ Poisson(λt ,d · s j ,t ,d )

We treat the demand shock ξ as a random effect, which induces a distribution on shares, re-

gardless of the data observed. Conditional on α,β ,γ, and the data, the shares are a function of the

random effect. This unobservable ξ influences market shares and the distribution we impose on it

affects how the shares are distributed. However, since ξ is assumed to be correlated with price, we

allow for the distribution of ξ to be correlated with the firm’s pricing decision. We follow the stan-

dard Bayesian framework for simultaneity with discrete choice models (Rossi and Allenby, 1993;

Jiang, Manchanda, and Rossi, 2009; Rossi, Allenby, and McCulloch, 2012). Using a set of price

instruments Z j ,t ,d , we assign

ξ j ,t ,d = f −1
�

s j ,t ,d |β ,α,γ, X t ,d

�

υ j ,t ,d = pj ,t ,d −Z ′j ,t ,dη







∼N iid(0,Σ) that such Σ=





τ ρ

ρ κ



 .
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This treatment of ξ allows for a rich level of price endogeneity. However, the approach also ra-

tionalizes zero sale observations. Correlation between the unobserved components of demand and

price is captured by ρ.

Randomness enters into this model in two locations, both in ξ j ,t ,d as well as in q j ,t ,d , so both

must be accounted for when drawing shares. This part of the estimation is more computationally

taxing. Our imposed distributional assumption on ξ carries through to induce a distribution on

s j ,t ,d . This is the distribution of shares if we only considered the demand parameters for data

augmentation. For notational parsimony, we omit the conditional of α, γ, β , υ, Σ, but note that

each function is implicitly conditioned on each. We refer to the share equation as

s j ,t ,d = f (ξ j ,t ,d ),

and since f is injective, the density of s j ,t ,d is given by

fs j ,t ,d
(x ) = fξ j ,t ,d

�

f −1(x )
�

·
�

�

�Jξ j ,t ,d→s j ,t ,d

�

�

�

−1
.

With this notation, Jξ j ,t ,d→s j ,t ,d
represents the Jacobian matrix of model shares with represent to ξ,

�

Jξ j ,t ,d→s j ,t ,d

�

mn
=
�

∂ s

∂ ξ

�

mn
=











γt s B
m ,t ,d s B

n ,t ,d + (1−γt )s L
m ,t ,d s L

n ,t ,d if m 6= n

−γt s B
m ,t ,d (1− s B

m ,t ,d )− (1−γt )s L
m ,t ,d (1− s L

m ,t ,d ) if m = n ,

Thus,
�

�

�Jξ j ,t ,d→s j ,t ,d

�

�

�

−1
denotes the inverse of the determinant of the Jacobian.

Importantly, the distribution assumed on ξ defines a distribution for the shares. Using this, we

can determine the likelihood of shares by finding the ξ values these shares imply. The Jacobian

term ensures that the shares are a proper probability distribution. For every share draw, we must

invert the share system to get ξ. Given this inversion, we compute the likelihood by determining the

distribution of ξ conditional on Σ and υ.

Since υ and ξ are assumed to be jointly normal, knowing υ provides information about the

magnitude of the demand shock. This joint normality does not factor into the Jacobian of the shares

distribution, since neither s j ,t ,d nor ξ j ,t ,d appear in the first-stage regression and the first-stage is

a linear system. However, we must use the correct conditional distribution for ξ. Conditioning on
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both η and Σ is enough to pin down the the correlation structure between ξ and υ, and to “observe”

υ as well. Drawing on the structure of the bivariate normal distribution, we have

ξ|υ∼N
�

ρυ

κ
,τ−

ρ2

κ

�

,

where
�

ξ

υ

�

∼N (0,Σ), Σ=





τ ρ

ρ κ



 .

One interpretation of this treatment of simultaneity is that price gives information about the draw

of ξ and so the conditional distribution of ξ is higher or lower depending on the unobservable

that influences price. With our modeling assumptions, the conditional distribution of shares of a

particular market (t , d ) is then given by

J (t ,d )
∏

j=1



φ

 

f −1(s j ,t ,d )−
ρυ
κ

q

τ− ρ
2

κ

!



 ·
�

�Jξt ,d→st ,d

�

�

−1
,

where φ(·) is the standard normal density function.

The posterior likelihood is constructed by taking the product of the each market’s inversion

multiplied by the likelihood contribution of each good sold in the market, following the capacity

constraint logic above. Since this distribution is not conjugate-prior, we sample from the posterior

using a Metropolis-Hastings step.6

3.2.3 Updating price coefficients, αL ,αB

We use a two-type random coefficient model following Berry, Carnall, and Spiller (1996), which

prohibits us from using the technique in Jiang, Manchanda, and Rossi (2009) to sample the distri-

bution of price coefficients. Here, we extend their framework to accommodate discrete unobserved

heterogeneity in the random coefficients model.

For a fixed set of product shares, randomness only enters the model through the unobservable

6Candidates are accepted and rejected according to a standard Metropolis-Hastings algorithm. We sample candidates
using a draw from the Dirichlet distribution centered around the previous shares, scaling every element by a constant
search parameter that can be tuned for efficiency. We use the Dirichlet distribution since it samples on a simplex, which
is always imposed on shares. We restrict results to be within the interval (0, 1) with a threshold of 10−5 for numerical
efficiency.
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ξ. For these constant shares, any choice of (α,β ) implies a residual ξ. Therefore, we can use the

assumed distribution on ξ to compute the likelihood of a particular (α,β ).

The likelihood of α = (αB ,αL ) can be constructed using the same logic as in determining the

prior for the share draws. Instead of sampling different shares, α is sampled. Different price sensitiv-

ities change the residual ξ, for which we can invert the demand system and evaluate the likelihood.

Conditional on η and Σ, we can compute the distribution of ξ and determine the likelihood of a

particular draw of α. The likelihood is given by

∏

(t ,d )

J (t ,d )
∏

j=1



φ

 

f −1(s j ,t ,d )−
ρυ
κ

q

τ− ρ
2

κ

!



 ·
�

�

�Jξ j ,t ,d→s j ,t ,d

�

�

�

−1
,

where φ(·) is again the standard normal density function.

Due to the lack of availability of conjugate priors, we can use any prior distribution on the price

coefficients. We impose a multivariate normal prior on α,

α∼N (α0,Σα).

which implies the posterior distribution is given by

∏

(t ,d )

J (t ,d )
∏

j=1



φ

 

f −1(s j ,t ,d )−
ρυ
κ

q

τ− ρ
2

κ

!



 ·
�

�

�Jξ j ,t ,d→s j ,t ,d

�

�

�

−1
·φ

�

Σ
− 1

2
α (α−α0)

�

. (3)

Sampling from this distribution is done with a Metropolis-Hastings step as well.7

3.2.4 Updating probabilities on consumer types, γ

The final demand parameter required in the model is γt , which are the probabilities on consumer

types. The likelihood for these parameters follow the same function as for α,β .

7We select candidates from a normal distribution centered around the previous accepted value. The variance of the
sampling distribution is then tweaked for optimal mixing.
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The likelihood of gamma given the shares drawn is equal to

∏

(t ,d )

J (t ,d )
∏

j=1



φ

 

f −1(s j ,t ,d )−
ρυ
κ

q

τ− ρ
2

κ

!



 ·
�

�

�Jξ j ,t ,d→s j ,t ,d

�

�

�

−1
. (4)

Unlike α, where we use a normal prior, we impose a Beta prior on γ,

γt ∼Beta
�

αγ,βγ
�

.

This ensures that all posterior draws are contained within the interval (0, 1), but still allows for

informative priors. We sample particular values of gamma using a Metropolis-Hastings.8

3.2.5 Updating remaining preferences, β

The draw for product preferences (β ) is substantially simpler than the update for α because these

preferences are assumed to be constant across consumer types. If these preferences were also type

specific, a similar method to the draw of α would be required. Our distributional assumptions that

allow us to use a Bayesian regression technique to draw β . This method is efficient, scales to high

dimensions easily, and does not require estimation tuning.

We define Ξ j ,t ,d = X j ,t ,dβ +ξ j ,t ,d where ξ j ,t ,d is taken as the random effects draw from the

previous step. As before, we still need to deal with the correlation structure between ξ and price.

Note that

ξ|υ∼N
�

ρυ

κ
,τ−

ρ2

κ

�

and after subtracting the mean and dividing by the standard deviation, we obtain a standard

normal distribution. This is given by

ξ− ρκυ
q

τ− ρ
2

κ

∼N (0, 1).

8The candidate is drawn using a normal distribution centered around the previous accepted value using the above
likelihood.
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The linear system can then be written as

Ξ j ,t ,d −
ρ

κ
υ j ,t ,d = X j ,t ,dβ +Uj ,t ,d ,

where Uj ,t ,d ∼i i d N
�

0,
q

τ− ρ
2

κ

�

. This equation is now a standard linear regression. By imposing

a normal prior on β , we can use the conjugacy of a standard Bayesian linear regression model to

obtain the posterior distribution of β . We assign the prior distribution to be

β ∼N (µβ , Vβ ),

which implies the posterior distribution for β is given by

β ∼N
�

�

X ′X +Vβ
−1
�−1
(X ′X

�

(X ′X )−1
X ′
�

Ξ−
ρ

κ
υ
��

+Vβ
−1µβ ) , (X

′X +Vβ
−1)
−1
�

τ−
ρ2

κ

��

. (5)

With this notation, X is the stacked matrix of all X j ,t ,d , and Ξ is a vector.

3.2.6 Updating the Price Equation: η

Updating η is essential for maintaining the correlation structure between the unobserved compo-

nents of demand (ξ) and price. Conditional on shares, α,β ,γ, and therefore ξ are constant. We can

treat this as “observing” ξ. This gives information about the distribution of υ based on the bi-variate

normal structure.

Recall that the pricing equation and the conditional distribution of υ given ξ are

pj ,t ,d = Z j ,t ,dη+υ j ,t ,d ,

υ|ξ∼N
�

ρ

τ
ξ,κ−

ρ2

τ

�

.

Subtracting the mean and dividing by the standard deviation produces a standard normal distribu-

tion,
υ− ρτξ
q

κ− ρ
2

τ

∼N (0, 1).
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The first-stage pricing regression can then be written as

pj ,t ,d −
ρ

τ
ξ j ,t ,d = Z j ,t ,dη+Uj ,t ,d ,

where Uj ,t ,d ∼ i i d N
�

0,
q

κ− ρ
2

τ

�

. Drawing η also uses standard Bayesian methodology. We

impose a normal prior on η, specifically

η∼N (µη, Vη).

Thus, the posterior distribution of η is equal to

η∼N
�

�

Z ′Z +Vη
−1
�−1
(Z ′Z

�

(Z ′Z )−1
Z ′
�

P −
ρ

τ
ξ
��

+Vη
−1µη), (Z

′Z +Vη
−1)
−1
�

κ−
ρ2

τ

��

. (6)

Where Z , P are matrices containing all the distinct elements of Z j ,t ,d and pj ,t ,d .

3.2.7 Updating the Correlation Structure: Σ

The final step of the estimation process is to sample the parameters of the joint-normal distribution

of ξ and η. We impose an Inverse-Wishart prior for a conjugate-prior distribution. Since we have

conditioned on all other parameters, we “observe” both ξ and η by inverting the share equation and

the first-stage price equation, respectively. Given the prior

Σ∼ I W (ν, V ),

the posterior distribution is then given by

Σ∼ I W (ν+N , V +S ) such that S =
∑

(t ,d )

J (t ,d )
∑

j=1

�

υ

ξ

��

υ

ξ

�′

. (7)

4 Monte Carlo Study

We demonstrate our empirical approach with a Monte Carlo study. We create a synthetic data set

representing 100 different departure dates, with a booking horizon of 120 days. This provides a

total of 22,000 observations for the arrivals process. This mimics conducting analysis on just more

18



than an annual quarter of data.

We specify the arrival process to be

At ,d ∼

Poisson(1) for t ≥ 60

Poisson(2) for 30≤ t < 60

Poisson(4) for 7≤ t < 30

Poisson(10) for t < 7.

For each departure date, we select the number of potential flight options from a discrete uniform

distribution. The minimum number of flight options is one; the maximum number of flights is

six. This is meant to create a scenario similar to observed flight frequencies. We allow capacity to

be sufficiently large such that the choice set does not change over time—this additional variation

would help identify substitution patterns. Next, we assume product characteristics are drawn from

a random uniform distribution. We draw the price disturbances υ j ,t ,d and the unobserved product

characteristics ξ j ,t ,d from the following multivariate normal distribution,

�

ξ j ,t ,d

υ j ,t ,d

�

∼N (0,Σ), where Σ=





0.5 0.5

0.5 1.0



 .

Two instruments are drawn from a standard normal distribution, and we define η = [−4, 8].

Prices are then calculated to be

pj ,t ,d = Zη+ν j ,t ,d .

We specify γt to vary over three or seven day windows across the booking period. The window

size is set to seven for t > 30, and three for rest of the booking horizon. For the first time window,

we set γt = .2 and the final time window γt = .8. We increase γt by a constant factor for each

window until the terminal interval. This creates an increasing sequence of γt across the booking

horizon.

Our choices on the arrival process, structural errors, and γt , create an environment in which

product-level demand is low, there is a high degree of endogeneity between price and the demand

shocks, and the inelastic consumers arrive towards the end of the booking horizon. All these features

are present in our data, which is discussed in detail in section 5, and together motivate our proposed
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estimation method.

With all the key data generating process parameters defined, we first calculate the conditional

choice probabilities (defined in Section 2). Next, we multiply these values by the Poisson arrival

rates to determine the distribution of demand. We draw sales quantities to complete the construction

of the data set. Finally, we apply the demand methodology presented in Section 3. After an initial

burn in period of 5,000 interactions, we sample chains for another 5,000 iterations.

Figure 1: Monte Carlo Estimates of the Arrival Process
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Note: Density plot of parameters for 5,000 sampled chains. (a) (b)

Figure 1 presents a summary of the estimates of the arrival process. Because the number of

parameters estimated is large, we present summaries over all of the parameters. Generally, we find

the arrival rates are precisely estimated, even though the specification contains over 200 parameters.

Panel (a) plots the distribution of the relative bias, (λ̂t −λt )/λt , where λ̂t is the predicted value.

We find that 93.4 percent of the parameters fall within the 95th percentile credible sets. Panel (b)

plots the distribution of the relative bias for periods in which λt = 1 and λt 6= 1. We see that the

distribution of relative bias for the λt = 1 periods are skewed to the right, while for the other periods

we have a distribution centered around 0. As the rate of arrivals increase, our estimation accuracy

improves.

Mechanically, the procedure works to ensure that searches can rationalize observed sales. That

is, the procedure increases any search rate in instances where the sum of inside good sales makes the

necessary arrival draw very unlikely. In addition, arrival rates can be adjusted downward depending

on restrictions imposed by other parameters of the model. This is rare and we have only observed
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very small decreases in Monte Carlo studies.

Figure 2 shows the posterior distributions for selected preference parameters. Panel (a) shows

the posterior distributions for the constant and price parameters for both consumer types. Despite

having high endogeneity, the true value to the pricing parameters appear in our 95th percentile

credible region and have relatively low variance. Panel (b) shows the posterior distributions for

the first couple of γt parameters, where arrivals are sparse. With only 300 or 700 observations

corresponding to each window, each of the true values lies within the credible region. Even with a

sparse arrival rate, our estimator is able to produce posteriors that contain the true value.

We find that with small volumes of data, instruments, and hundreds of parameters, our estima-

tion methodology is able to capture the true value for many of the parameters in the 95th percentile

credible region of the sampled posteriors. Importantly, the method also scales well computationally

because estimating λ and β (the parameters with the largest dimension) take relatively little estima-

tion time within the sampler. For example, adjusting the arrival process so that it contains hundreds

more parameters does not change total computation time substantially.

Computation burden can increase with larger samples for two reasons. First, if the choice set

increases, inverting market shares—which is required in several steps of the Gibbs procedure—can

take more time. If shares are small, the inversion can take longer to compute. Second, additional

markets (more departure dates or days before departure) necessarily means inverting shares in more

markets. However, the additional time requirement can be addressed by conducting the inversion

separately for each market and parallelizing the computation. We also recommend a jacobian or

accelerated fixed point method when implementing the contraction, as these methods reduce the

number of iterative steps it takes to solve for the structural errors.
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Figure 2: Monte Carlo Preference Parameters

(a) Price Parameters
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Note: Density plot of parameters for 5,000 sampled chains. (a) β1,1 is the price coefficient for the leisure type, β2,1 is the price coefficient
for the business type, β2,2 is the intercept. (b) The first four γ parameters which correspond to when arrivals are sparse.

5 Empirical Application

We apply our proposed methodology to granular data provided by a large international air carrier

based in the United States. In Section 5.1, we introduce the different data series used. In Section 5.2,
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we document key data patterns that must be rationalized by the model. In Section 5.3, we detail our

empirical selection. In Section 5.4, we discuss model identification. Finally, in Section 5.5, we

estimate the model using selected markets.

5.1 Data

We use data provided by the air carrier for domestic flights over a thirteen month period. We use

the publicly available DB1B and T100 tables provided by the Bureau of Transportation Statistics

to select airline routes for analysis. We select markets in which the air carrier maintains a high

percentage of all nonstop traffic. We also select routes that minimize the percentage of connecting

flight traffic.

The first data set used contains bookings information. Each entry in the table includes the fare

paid, the number of passengers involved, the particular flights included in the itinerary, the booking

channel (direct, travel agency, etc.), and the purchase date. These data allow us to form a complete

picture of quantities sold for nonstop bookings. The fare data contain the lowest available fare

leading up to departure, which we use to construct prices of all products offered by the carrier (we

supplement this with filed fare information). We simplify our analysis a number of ways. First,

we focus on economy class tickets. Second, we assume consumers purchase the lowest available

fare—although customers may purchase a more expensive economy fare class, this is rare. Third,

we assume all consumers are offered the same price for a particular flight within a day—in our

sample, less than one percent of observed inventory decisions prohibit all observed buyers from

purchasing at the same price. Finally, we assume consumers purchase a single ticket only—average

bookings are between one and two seats.

The second data set used are inventory data. These data contain inventory allocations for each

flight in the sample.9 In addition, the inventory data contain a daily, flight-level measure of the air

carrier’s assigned opportunity cost of a seat sold. These values are an output of the air carrier’s

revenue management software. We will use this data column as an instrument when estimating

demand.

The final data set used contains search information. The search data measure the aggregate

9The economy availability, combined with the booking data, allow us to capture quantity sold that are not present in
our bookings data. Unobserved (to us) sales are from connecting traffic, rewards bookings, or consumers altering existing
reservations.
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searches for each market, which we define as a origin-destination-departure date-purchase date

tuple. We construct these data using consumer clickstream data. Consumers arrive at the air carrier’s

website or mobile app. Their activity in a browsing session is tracked, even if they are not logged

into the site or app. We count the unique number of consumers who execute search requests across

all markets. As an example, if a consumer searches for "market A," then "market B," then "market

A" again, we count this as a single search for "market A" and a single search for "market B."

Note that we measure the market size for the direct channel, which is one of three booking

channels. Consumers can also purchase via an Online Travel Agency (OTA), such as Expedia, or

via a travel agent. In Section 5.2, we summarize how bookings vary across channels. We cannot

account for searches made from other channels, however, because we observe all bookings, we

account for searches made via the unobserved channels through a scaling factor (this is based on the

fraction of sales through the direct channel).

We use the sum of unique users for each market to define the search count, however, this does

not account for multiple passenger itineraries. Thus, we scale searches by the observed number of

passengers per booking.

5.2 Descriptive Evidence

We document several facts to motivate our approach to modeling demand in this context. The timing

of the market—both in terms of sales and pricing decisions—highlights the need to leverage search

data to disentangle changes in market size from changes in preferences (composition of consumers

in the market).

Airline tickets are typically available up to one year in advance of purchase. Figure 3 shows

how all markets in our sample evolve toward the departure date. All lines are scaled by their series

maximum so that they all lie between zero and one. The graph shows three important findings:

(i) searches and sales are low well in advance of the departure date, (ii) searches and bookings

increase closer to the departure date, and (iii) fares are U-shaped over the booking horizon but

increase greatly close to the departure date. In addition to what is shown in these scaled series, we

note that the average bookings over the entire horizon are less than one per day, and the median

rate of bookings is zero up until less than ninety days before departure. This pattern is mirrored in

consumer searches.
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Figure 3: Search, Bookings, and Prices Over Time - Full Booking Horizon
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Figure 4: Search, Bookings, and Prices Over Time - Final 90 Days
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Although we observe the entire booking horizon for all flights, a majority of seats are sold

within a few months of the departure date. For this reason, we focus on the final ninety days before

departure. Only seventeen percent of bookings occur outside this window. Figure 4 repeats Figure

3 but zooms in on the final ninety days before departure. The total size of the market, as measured

by consumer search, is increasing until the day prior to departure. Moreover, the booking rate also

increases during this period. The dips in the booking rate coincide with the expiration of fares

with advance purchase discount requirements. There is relatively little variation in the average fare

outside of these regular price changes.

As mentioned in Section 5.1, we observe bookings from all channels, but we do not observe

search from indirect purchase channels. Our estimation approach accounts for these unobserved
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arrivals by incorporating the inverse of direct channel share into the exogenous scaling factor. The

extent to which this adjustment alters the market size considerably varies across routes, but it does

not vary over the booking horizon.

For many routes, searches are sparse over the entire booking horizon. We frequently observe

either no searches or a single search request in many markets. Figure 5 plots the distribution of route-

level search and sales sparsity over the entire booking horizon. Figure 6 plots the distributions of

route-level sparsity using only the last ninety days before departure. Both searches and sales become

less sparse towards the departure date. However, we measure sales sparsity by aggregating over all

flights within the day—the frequency of zero sales at the flight level is much higher. Together,

these empirical findings highlight the need for a demand model that (i) accounts for across-route

heterogeneity in arrivals and preferences, (ii) captures the possibility of a market size of zero, and

(iii) accounts for frequent zero-purchase observations.

Figure 5: Market Sparsity Across Routes

(a) Search Sparsity
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(b) Sales Sparsity
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Note: (b) Zero sales are measured here as zero inside share - aggregating across different flight times in the same day.

5.3 Empirical Specification

To demonstrate our methodology, we select two origin-destination pairs where the air carrier offers

several daily flights. We select these routes for two reasons. First, we can exploit variation in the

number of products to estimate time-of-day departure parameters. This allows us to investigate het-

erogeneity in demand within a departure date. Second, these markets also offer substantial variation

in search activity over time. This allows us to demonstrates how the methodology accommodates

variation in consumer behavior as the departure date approaches.
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Figure 6: Market Sparsity Across Routes Close to Departure

(a) Search Sparsity
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(b) Sales Sparsity
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Note: (b) Zero sales are measured here as zero inside share - aggregating across different flight times in the same day.

For each market, we use the following utility specification,

ui , j ,t ,d =β0−α`(i )pj ,t ,d +FE(Time of Day j ) +FE(d ) +ξ j ,t ,d + εi , j ,t ,d .

We allow the share of business travelers to vary over time, but we put some structure onto the

problem to improve identification by pooling over days before departure. We employ a blocking

function that maps days before departure into different γ parameters. We choose a blocking function

that becomes more granular (pools fewer days) as the departure date approaches. The specification

is shown graphically in the model fit figures below. Finally, recall that we estimate the arrival rates

with additive day before departure and departure date parameters.

5.4 Identification

The difficulty in estimating a model with stochastic demand is handling the problem of separably

identifying shocks to arrivals from shocks to preferences. Conditional on observing information

about the arrival process, identification of our model follows from standard arguments from the

literature on demand in differentiated products using market level data. This is discussed in Berry

and Haile (2014, 2016). The time of day taste parameters are identified from the variation between

the number of flights and times that they are offered across departure dates. The parameters that

determine the mix of business and leisure consumers are identified from a unique feature of the

airline data—prices increase greatly but the booking rate does not fall substantially under higher
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prices. This observation suggests that preferences of arriving consumers evolve over the booking

horizon. Our specification picks this up through adjustments to γt .

Because we allow the unobserved product level demand shocks to be correlated with price, we

require instruments to provide sufficient exogenous variation to identify the parameters that measure

price sensitivity between the two consumer types. We use jet fuel prices, the carrier’s shadow price

of capacity (an output of the revenue management software), plane capacity, and total number of

outbound bookings from a route’s destination airport as our instruments.10

Fuel prices act as a cost shifter. The shadow price informs the opportunity cost of capacity, but

might be correlated with the contemporaneous unobserved demand shock. We have assumed the

unobserved demand shocks are not correlated over time, so we use a one period lag on the shadow

value to ensure exclusion. The plane capacity captures the fact that the opportunity cost of selling

one seat is lower for a larger plane serving the same route. The total number of outbound bookings at

the destination airport captures the change in opportunity cost for flights that are driven by demand

shocks in other markets. For example, for a flight from A to B , where B potentially provides service

elsewhere, we use all traffic from B onward to other destinations C or D . We assume demand

shocks are independent across markets, so shocks to B → C and B → D are unrelated to demand

for A→ B . Thus, a positive shock to onward traffic, out of hub B , will raise the opportunity cost of

serving A→ B →C or A→ B →D . This propagates to price set on the A→ B leg.

5.5 Estimation Results

Figure 7 and Figure 8 contain summary plots of the estimated demand systems. Panel (a) com-

pares the time series of the estimated search process by day before departure with its empirical

counterpart,
1

|D |

∑

d∈D

ÔAt ,d (bθt , bθd ), and
∑

d∈D

1

|D |

∑

d∈D

Adata
t ,d .

The search process is computed at the posterior mean. Panel (b) compares the sum of inside model

shares (probability of purchasing a ticket on any flight) model to empirical shares in a similar man-

10For a route with origin O and destination D , the total number of outbound bookings from the route’s destination
airport is can be defined as the following;

∑K
i=1 QD ,O ′ . Where QD ,O ′ is the sum of the total number of bookings in period

t , across all flights, for markets where the origin is the original route’s destination. In this definition, we assume that
there are K many routes that have original route’s destination as an origin.
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Panel (c) shows how the probability on consumer types changes over time in solid (orange). In

addition to plotting bγt , we plot the probability of purchase conditional on an arriving consumer

being a business customer. These time series are also calculated at the posterior means. Finally,

panel (d) depicts demand elasticities. The solid (orange) line shows the average product elasticity

(over flights and departure dates), for each day before departure. The two dashed lines show the

least and most elastic flights. These lines demonstrate the heterogeneity in estimates across flights.

In both markets, our specification on arrivals is very flexible and the estimated arrival processes

closely match the data. The vertical axes on the plots are normalized, but they show arrivals increase

over time. There is a substantial increase in searches close to the departure date. Fitting the market

size closely is only possible through our flexible fixed effects specification, particularly over days

from departure.

The model fits shares reasonably well. The sparsity in sales well in the advance of the departure

date is the most difficult feature of the data to match. This difficulty is shown in panel (b) for

Route 2, where model shares are higher and less dispersed than data shares. Because searches and

bookings increase closer to the departure date, the model closely matches the data here. There is a

noticeable drop in shares in the last week before departure. For Route 1, the increase in searches,

the lack of an increase in quantity sold, and non-rising prices close to the departure date, cause

γt to drop immediately before departure. That is, although we identify most arrivals as business

travelers very close to the departure date, the fact that shares decrease with prices mostly constant

is rationalized by additional leisure travelers entering the market.

Our estimates suggest that a systematic change in the types of consumers interested in traveling

occurs over time. For Route 1, we estimate that γt ranges from close to zero all the way to one.

For Route 2, we estimate γt ranges from 0.4 to one. Close to departure, the customers arriving are

nearly all business-type. We do not interpret these segments literally; the business segment is less

price sensitive and arrives later, on average. These characteristics need not only apply to customers

traveling for business—business is the label we give to the discrete, unobserved types corresponding

to these demand characteristics.
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We estimate flight-level demand elasticities to range from -3.0 to -1.3 for Route 1 and -2.1 to

-1.1 for Route 2. Although we estimate that the demand elasticity falls close to the departure date,

willingness to pay is high—both markets produce γt s close to one within the last week of departure.

We also find significant variation in demand across flights and departure dates. The difference in

demand elasticities within any given t typically varies by close to one, except for Route 2, close to

the departure date.

In addition to elasticity variation, the market size variation driven by θd —the departure date

fixed effect—is substantial. For example, the highest-arrival departure date has around three times

as many arrivals as the lowest-arrival date for Route 2. For Route 1, this is less stark, with the

highest arrival departure date about 75 percent higher than the lowest. Demand also varies based on

departure date, conditional on arrivals and customer type composition.

The variation in arrivals and demand across departure dates highlights the importance of pricing

that is responsive to these differences. Some of the departure date variation is systematic. All else

equal, arrivals are higher for weekend travel than weekday. The same is true for demand, conditional

on arrivals. Much of the variation in the departure date fixed effects in the utility specification move

systematically with the day of week.

Our estimates also suggest that, within a departure date, flight departure time alters willingness

to pay. For Route 1, which is a westbound long-haul flight, consumers are willing to pay $150 more

for a late morning or early evening one-way flight than the earliest departure. For Route 2, which

is a shorter flight, consumers are willing to pay $125 more for a late morning or afternoon one-way

flight than the earliest departure times. These time of day preferences are likely highly variable

across routes; for example, the eastbound flights on Route 1 may have additional willingness to pay

for early morning departures.
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Figure 7: Model Estimates for Route 1

(a) Model vs. Data Search
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(b) Model vs. Empirical Shares
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(c) Pr(Business) over Time
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(d) Demand Elasticities over Time
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Note: The horizontal axis of all plots denotes the negative time index, e.g. zero corresponds to the last day before departure. (a)
Normalized model fit of searches with data searches. (b) Model fit of product shares with empirical shares. (c) Fitted values of γt over
time, along with the probability a consumer is business conditional on purchase. (d) Mean product elasticities over time, along with the
least and most elastic flights.
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Figure 8: Model Estimates for Route 2

(a) Model vs. Data Search
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(b) Model vs. Empirical Shares
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(c) Pr(Business) over Time
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(d) Demand Elasticities over Time
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Note: The horizontal axis of all plots denotes the negative time index, e.g. zero corresponds to the last day before departure. (a)
Normalized model fit of searches with data searches. (b) Model fit of product shares with empirical shares. (c) Fitted values of γt over
time, along with the probability a consumer is business conditional on purchase. (d) Mean product elasticities over time, along with the
least and most elastic flights.
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6 Conclusion

In this paper, we introduce a tractable demand methodology that can be used to simultaneously esti-

mate the arrival process of customers and their associated preferences. The demand model features

stochastic consumer arrivals with time-varying parameters and a mass-point random coefficients

utility specification where the mixture of consumer types is allowed to change over time. We pro-

pose using an aggregate measure of search activity—the total number of consumers who execute

search requests—to inform the size of the market and to estimate the magnitude of stochastic de-

mand. We develop and implement a Bayesian estimation procedure that accommodates zero sale

observations and prices to be correlated with a product-level unobservable demand shock. We ap-

ply our method to granular data provided by a large international air carrier based in the United

States. We find that demand becomes more inelastic and the average number of interested travelers

increases toward the departure date.

Given the degree of departure date heterogeneity in arrivals, it may be difficult to anticipate the

potential market size for each flight. Output from our demand procedure can be used to investigate

learning about the market’s size in real time (Lin, 2006). In addition, if demand is correlated over

time, past arrivals may be useful to inform current and future pricing decisions. We leave exploring

the supply-side implications of empirical procedure for future work.
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