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Introduction
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Crystal.AI
Improving the demand management workflow; making calibration quicker for demand managers and more 
accurate by leveraging advanced analytics
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Problem Definition

❖ Choice of reference point to 
compute the impact

❖ Small expected impact in 
percentage

❖ Extended period of time to 
have an effect on revenue

Crystal.AI: AI-driven analytics 

solution for demand managers

● Adjustments to the RM 

forecasts

● Consequences on all 

subsequent decisions, e.g., 

pricing 

CONTEXT CHALLENGES

Apply a change in a 
complex RM system

Estimate its impact on 
a Key Performance 

Indicator, here 
revenue
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Methods used in practice

Method Description Pros/Cons

Change YoY Analyse the Year over Year $ change     Easily computable for high-level purposes
    Unreliable for measuring impact

Checkerboard Apply change on alternating departure weeks     Subsequent dates can be affected
    Difficult to manage 

A-B Testing Reference is the revenue of a set of ODs with 
similar behaviour

    Important noise from inexistence of adequate  ODs
    Difficult to measure a small impact

Counterfactual 
predictions

Estimate what the revenue would have been 
keeping business as usual

    Most promising for measuring small impacts
    Adaptable for various treatments lengths

8



State of the art - Counterfactual Predictions

KPI (e.g. revenue)

Time

Treatment 
starting point

Observed

Estimated

Observed for 
control ODs

2 main methods,
● Horizontal: unconfoundedness literature Imbens and Rubin (2015).

● Vertical: synthetic controls, Doudchenko and Imbens (2016).  Selected method, suited for long treatment periods. 

Estimated 
impact
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Used for macroeconomic applications.
● Impact of the German reunification on per capita GDP of West Germany, Abadie et al. (2015) 
● Impact of terrorist conflict on per capita GDP of Basque Country, Abadie and Gardeazabal (2003)
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Our application and its challenges

● Treatment: new adjustments to RM forecasts.

● Treated units: OD pairs subject to the treatment. 

● Control units: OD pairs unaffected by the treatment

Requirement: Both treated and control units should not suffer from large external shocks

Specificities of our application
● Microeconomic level

● Multiple treated units: a representative subset of the airline’s network

● Large number of potential control units but potential spillover effects

● Small expected impact in percentage
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Counterfactual Prediction models

●  Revenue of treated unit at day    
●  Revenue of multiple control ODs at day    
●  Counterfactual prediction model, trained on the pre-treatment period. 

Comparison of different models from the literature 

● Synthetic controls and derivatives.        is a linear function: 

○ Synthetic Controls SC ( Abadie and Gardeazabal, 2003) .  The weights      form a convex combination. 

○ Robust Synthetic Controls RSC (Amjad et al., 2018). The revenue data are first denoised (via singular 

value thresholding), and the weights are estimated on denoised data.

○ Regression CR (Doudchenko and Imbens, 2016).   
○ Regression with regularization CR-EN (Doudchenko and Imbens, 2016). Elastic-net regularization on 

the weights      .  

● Feed-Forward Neural Network FFNN.       is a neural network, which can consider additional features in        
such as temporal features.   
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Experimental Setup
Treated units
15 non-directional treated ODs, i.e., 30 directional treated ODs

Control units
317 carefully chosen control ODs to be unaffected by the treatment 

Treatment Periods
● 15 pseudo-treatment period of 6 months to evaluate model performances
● Observed untreated daily revenue data from January 2013 to February 2020

Key Performance Indicator
Total revenue of the treated units over the complete treatment period 

Setting for the model
● Predict the revenue of each treated unit at each day, and sum the predictions after. It allows to have 

predictions at OD-level, usually at the expense of accuracy. 
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Results - Daily predicted revenue
Absolute percentage error and squared error* at each day for each pseudo-treatment period:

MAPE RMSE

SC 4.6% 8.3

RSC 3.6% 6.5

CR 3.4% 6.0

CR-EN 8.6% 15.0

FFNN 4.6% 7.5

*RMSE is scaled to the average daily revenue

Average performance

Takeaways 
➢ Models have similar performance 

except CR-EN
➢ CR predicts the daily total 

revenue with 3.4% of error
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Results - Daily predicted revenue at OD level
Absolute percentage error at each day for each treated OD*: 

SC 13.1%

RSC 13.6%

CR 13.8%

CR-EN 16.0%

FFNN 13.3%
*Note on the FFNN: it relaxes independence assumption, and predicts 
simultaneously all treated ODs with multiple neurons in the output layer.   

Average performance

Takeaways 

➢ Models have similar performance except 

CR-EN

➢ SC predicts the daily revenue of a treated 

OD with 13.1% of error
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Results - Total predicted revenue
Error on the total revenue over all treated ODs and the complete treatment period at each pseudo-treatment period

Average performance

SC 3.3%

RSC 1.2%

CR 1.1%

CR-EN 2.5%

FFNN 1.0%

Detailed performance

Takeaways
➢ High accuracy and stability for FFNN, RSC and CR

➢ FFNN can predict the total revenue with 1% of error
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Results - Simulated Impact
Simulation study to estimate impact in period 2.

1. Simulate a treatment  

2. Predict the counterfactual revenue 

3. Estimate the impact  

0.01 0.02 0.03 0.05

True 1.0% 2.0% 3.0% 5.1%

RSC 1.7% 2.6% 3.7% 5.7%

CR 1.5% 2.5% 3.5% 5.6%

FFNN 0.6% 1.6% 2.6% 4.7%
Takeaways
➢ Impact over/under estimated depending on the bias of predictions 
➢ Accurate impact estimation, even with counterfactual prediction 

errors

Results
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Conclusion

★ New technique to estimate impact of a treatment: counterfactual prediction models

★ Applicable in various situations

★ Few requirements: only KPI data at OD level

★ Designed to estimate the revenue impact of Crystal.AI, but the industry was hit by COVID-19

★ To be leveraged in other change tests
○ Pricing structure/Fare brands/WTP 
○ Overbooking calculation/no-show forecast method
○ Targeted advertising campaign
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Appendix

Selection of control units: Unaffected by the treatment

● Demand managers insights

● Discard potential ODs with 3 rules:

• Geographic: discard OD pairs where either the origin or the destination is close to the treated 

ODs’ airports. 

• Revenue ratio: discard the OD pairs where at least 5% of the itineraries have a leg identical to one 

of the treated ODs (the pricing of the treated OD pair can affect the pricing of the related 

itineraries)

• Sparsity: discard seasonal ODs, i.e., those that operate only at certain times in the year, and 

sparse ODs.

● From the remaining ODs, we select the 40 most correlated ODs for each treated OD.
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Appendix - Length of treatment period
We reached 1.0% of accuracy for the total revenue over a 6 months treatment period. How is the accuracy for a 
shorter treatment period? 

Takeaways
➢ 1% and 2% thresholds of 

absolute error are reached 

after 1 month for most 

models

➢ The treatment period can 

be substantially reduced 
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Appendix: Confidence Intervals

❏ Setting S1
❏ CR counterfactual predictions model

Settings

Assumptions

Error terms 
❏ independent 
❏ identically distributed 
❏ normally distributed

Error term

We can derive an exact formula for the 
confidence intervals, and compute them.
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