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Motivation
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Classic RM cannot deal with epistemic uncertainty

Example:

• Mean demand 𝜇 = 100

• Demand realization 𝑋 ~ Pois(𝜇)

• Dynamic program takes this into account

Example:

• Mean demand 𝜇 ~𝒩(100, 202)

• Demand realization 𝑋 ~ Pois(𝜇)

• Standard RM methods cannot deal with this

Aleatoric uncertainty: “[…] unknowns that differ 

each time we run the same experiment.”

– Wikipedia

Epistemic uncertainty: “[…] things we could in 

principle know but do not in practice.”

– Wikipedia 



Example scenario
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Example scenario

• Time horizon: 𝑡 ∈ [0, 100]

• Capacity: 100

• Expected demand (Poisson): 120 (at revenue-optimal prices)

• Exponential WTP with two customer segments

• Dynamic pricing
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Sample trajectories and bid price distribution

Bid price vectors at different timesSample paths



Simulation-based 
reinforcement 

learning



©2021 PROS, Inc. All rights reserved. Confidential and Proprietary
page 9

Standard RM process

Demand forecast

Network optimization

Bid price control

Bookings, revenue

Expected demand

Bid prices

Prices

Real world
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Full Reinforcement Learning

Reinforcement 
learning model

Bookings, revenue

Prices

Real world

See for example: Acuna-Agost & Fiig, AGIFORS RM 2017
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Simulation-based RL (this work)

Demand forecast

RL model

Bid price control

Bookings, revenue

Prices

Real world

Samples from 

demand distribution

Simulation

Bookings, 

revenue

Prices

RL training loop

Bid prices
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Value function approximation with simulation-based RL

Options for updating 𝑽:

a) Monte-Carlo (MC) learning

𝑉 𝑡, 𝑖 ← observed revenue-to-come from state (𝑡, 𝑖) until end of run

b) Temporal difference (TD) learning

𝑉 𝑡, 𝑖 ← 𝑉 𝑡 + 1, 𝑖′ + observed revenue during state transition 𝑡, 𝑖 to (𝑡 + 1, 𝑖′)

Initialize ML 
model for 𝑉(𝑡, 𝑖)

Compute 
controls based 
on current 𝑉

Sample requests 
and simulate 

booking process
Update 𝑉

RL training loop

Repeat until convergence
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Monte-Carlo learning converges to a near-optimum
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Scenario-based 

RM
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Scenario-based RM (discrete case) 

• Three scenarios with different demand levels

• Each occurs with given probabilities 𝑝𝑠

• We don’t know which scenario we are in

• Price can only depend on state 𝑡, 𝑖

• Problem not solvable via DP

• Simple heuristics:

• BP from medium demand scenario

• Weighted average of BP with constant weights 

60%20% 20%

highmediumlow

120

60

180
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Remaining capacity contains information about demand scenario

• Different state distribution between 

scenarios

• Prior probability 𝑝𝑠 for scenario 𝑠

• Bayes’ rule for posterior: 

𝑝 𝑠 𝑡, 𝑖) =
𝑝 𝑖 | 𝑡, 𝑠 ⋅ 𝑝𝑠

𝑝 𝑖 𝑡 )

• Idea: Weighted average of BP

𝜋 𝑡, 𝑖 =

𝑠

𝑝 𝑠 𝑡, 𝑖 ⋅ 𝜋𝑠(𝑡, 𝑖)

• RL model trained on sample paths 

is implicitly weighted correctly!

Fewer bookings indicate 

low demand scenario

More bookings indicate 

high demand scenario

highmediumlow
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Monte-Carlo learning converges far from optimum
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Simple value function approximation doesn’t work

• Revenue-to-come decreases with 

higher remaining capacity

• Naïve bid price is negative

• Model restrictions push bp to zero

• Per scenario behavior is as expected

➢ Compute bid price first, then average

➢ Can we update the bid price instead 

of the value function? 

Observed revenue-to-come 𝑽 (𝒕 = 𝟔𝟎)

highmediumlow
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TD learning update of bid price

• Bellman equation for value function

ሶ𝑉 𝑡, 𝑖 = −max
𝑓

𝑑 𝑡, 𝑓 𝑓 − 𝜋 𝑡, 𝑖 ≔ −ℎ(𝑡, 𝜋 𝑡, 𝑖 )

• Differential equation for bid price and linearize

ሶ𝜋 𝑡, 𝑖 = ℎ 𝑡, 𝜋 𝑡, 𝑖 − 1 − ℎ 𝑡, 𝜋 𝑡, 𝑖

≈
𝜕ℎ

𝜕𝜋
𝑡, 𝜋 𝑡, 𝑖 𝜋 𝑡, 𝑖 − 1 − 𝜋 𝑡, 𝑖

= −𝑑 𝑡, 𝑓∗(𝑡, 𝑖) ⋅ 𝜋 𝑡, 𝑖 − 1 − 𝜋 𝑡, 𝑖

• TD learning update for bid prices:

𝜋 𝑡, 𝑖 ← 𝜋 𝑡 + 1, 𝑖 + [bookings in state 𝑡, 𝑖 ] ⋅ [𝜋 𝑡, 𝑖 − 1 − 𝜋 𝑡, 𝑖 ]
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Bid price TD learning achieves ~1% revenue gain
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Summary
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Summary

• Scenario-based RM is one way to address forecast uncertainty

• The corresponding control problem is not solvable via a DP

• Simulation-based RL works without Poisson assumption

• Naïve value learning does not work

• TD learning update for the bid price leads to promising first results

• Potential next step: Network case
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