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Airline Offer Optimization

NDC enables the dynamic creation of offers that include bundles of flights and
ancillary services

Customer choices between offers become more relevant for price optimization

Optimized bundling of services can represent a new revenue opportunity
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Naive A La Carte Pricing: p; constant (e.g. equal to mean valuation)

Myopic A La Carte Pricing: p; = argmax (p; — ¢;1) - Pri(p;1)
P1

Joint Optimal Pricing: p* = arg mgx{ZOiES(pi —¢;) - Pr;(py, 02, 03) }
p
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Joint offer set selection and pricing represents a new
optimization problem in airline revenue management
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The Markov Chain Choice Model (MCCM) :;:Il\i/:-aDEUS
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The MCCM! has several advantages for price optimization:
Any random utility model can be modeled as a MCCM1.2
IIA property not necessarily present (no constant markup problem3 for price optimization)

Optimal prices can be computed through a series of one-dimensional optimizations*

1Blanchet et al., 2016; 2Berbeglia, 2016, 3Gallego and Wang, 2014; 4Dong et al., 2019 ‘



Non-PODS Simulation of Ancillary Purchases
Comparing MCCM Bundle Pricing Against A La Carte Pricing Strategies

Customers choose the Offer i that maximizes their utility U; = V; — p;
Airline models customer behavior with the MCCM

Compare MCCM prices Naive A La Carte Pricing (price = ug,)
and Myopic A La Carte Pricing
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MCCM Parameters

0(p) =Pr(V(u,0,7) 2 p)
Ai = 1/7
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When relevance is low, MCCM reduces the bundle discount and offers myopic ALC prices dMaDEUS
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MCCM Prices with Cost of Provision T | Comsortium
When cost is low, the optimized prices reduce and more ancillaries are sold dMaDEUS
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Maximum Likelihood Estimation of MCCM Parameters T | Comrtium
Change in Revenue compared to Baseline Naive Pricing adMaDEUS

~— Dataset: 100,000 observed bookings over 200 randomly sampled price combinations from
artificially simulated passengers with the same V, distributions

~— Model: Constrained MCCM with 10 free parameters Relevance r Cost c
~— Optimization: Local optimization to maximize log-likelihood Variable $0
Outcome of Parameter Estimation? Ancillary Revenue vs.
Price p; Estimated Simulated Baseline “"Naive” Pricing?
Est. Params Purch Prob Purch Prob Myopic ALC (Known Parameters)
[0) [o)
1 522.05 0% 0% m MCCM (Estimated Parameters)
2 $24.93 2% 1% 37%
3 $24.87 2% 1%
o o 25%
12 $27.28 11% 10% 210 0% 0%
13 $27.24 11% 10% 16%
23 $31.05 22% 13%
123 $35.32 30% 38%

r=50% 75% 100%

Ancillary Relevance
lExample Results for Relevance=75% and Cost=$0, 2Naive pricing sets prices equal to the true mean valuation ‘
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Change in Revenue compared to Baseline Naive Pricing adMaDEUS

~— Dataset: 100,000 observed bookings over 200 randomly sampled price combinations from
artificially simulated passengers with the same V, distributions

~— Model: Constrained MCCM with 10 free parameters Relevance r Cost c
~— Optimization: Local optimization to maximize log-likelihood 75% Variable
Outcome of Parameter Estimation? Ancillary Revenue vs.

Price p; Estimated Simulated Baseline “"Naive” Pricing?

Est. Params Purch Prob Purch Prob

Myopic ALC (Known Parameters)

(o) (o)
1 522.05 0% 0% ® MCCM (Estimated Parameters)
2 $24.93 2% 1%
0,
3 $24.87 2% 1% 25%
20%
12 S27.28 11% 10% 15%
13 S27.24 11% 10% o, 11%
%

23 $31.05 22% 13% 7%

123 $35.32 30% 38%
c=%0 $5 $10

Cost of Provision
lExample Results for Relevance=75% and Cost=$0, 2Naive pricing sets prices equal to the true mean valuation n
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Conclusions

~— Goal: Jointly optimize the prices of any number of Offers in an Offer Set

~ Computationally infeasible for realistic choice models and Offer Set sizes

~— MCCM is a relatively new model with attractive properties for the Offer Set

Pricing problem
Offer Set s
~ Computationally efficient & can mimic any random utility model (TTTTTTToms . N

~ Optimal prices do not have constant markup (price - cost) property

~— MCCM produces reasonable prices and is tractable
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~ Revenue benefits from bundle pricing over myopic ALC pricing (+4% atr=0.75) - _ _ _ _ _ _ _ _ _ _ _ _ __________
~ Good ancillary revenue improvements over naive ALC pricing (+25% at r=0.75)

~ Parameter estimation is feasible using log-likelihood optimization
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