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Abstract

Changes in airline business models over the last ten to fifteen years have led to a rapid growth
in ancillary services and ancillary revenues. However, the development of revenue management
models has not kept pace in this domain; availability controls are still designed to maximize ticket
revenues, with ancillary revenues as an afterthought. A more comprehensive approach would favor
booking policies that maximize total revenues.

We propose an Ancillary Choice Dynamic Program for total revenue optimization that explicitly
incorporates the revenues and passenger choice impacts of ancillary services in addition to tic-
ket revenues. We use an estimate of conditional passenger choice probabilities to compute choice
and ancillary-adjusted marginal revenues for booking policies through an Ancillary Marginal Reve-
nue transformation, and we develop an Ancillary Marginal Demand forecasting model to estimate
demand volumes. We combine the AMD and AMR frameworks as total revenue optimization heu-
ristics for existing RM optimizers, such as EMSR. We discuss implementation challenges and use
the Passenger Origin-Destination Simulator (PODS) to illustrate the performance of our approach
versus traditional RM models. The results suggest that AMD and AMR can increase revenue for
airlines by up to 2%. Finally, we discuss the potential for our dynamic program to be used as the
basis of an offer generation system, leveraging the power of New Distribution Capability.

Keywords: airline revenue management, ancillary services, total revenue optimization, passenger
choice, offer generation, New Distribution Capability

1. Introduction

For decades, airlines have invested in revenue management (RM) systems to maximize the pro-
ceeds from ticket sales. Since the mid-2000s, however, airlines have been developing a secondary,
ancillary, revenue stream by both unbundling their product and offering new services for sale. As
the number, price, and value to airlines of ancillary services grow, so does the potential benefit

of a new generation of revenue management models that attempt to maximize total revenue, not

*Corresponding author
Email address: bockelie@mit.edu (Adam Bockelie)

1 June 1, 2018



just ticket revenue. We develop a new approach to total revenue optimization with the Ancillary
Choice Dynamic Program (ACDP), which explicitly incorporates ancillary revenues and the pas-
senger choice impacts of ancillary services. We then show that the model leads to two heuristics,
an Ancillary Marginal Demand transformation (AMD) and an Ancillary Marginal Revenue trans-
formation (AMR), which together can transform existing RM models to be both ancillary-aware
and choice-aware in their calculation of fare class booking limits. Finally, we discuss how emerging
technologies in airline distribution will allow further extensions to our model, and describe how our

work could provide a platform for an offer generation engine.

We focus specifically on optional services sold to passengers in conjunction with a particular iti-
nerary, such as checked baggage, seating upgrades and seat assignments, inflight meals and enter-
tainment, priority boarding, and lounge access. These services provide a significant and growing
share of revenue to airlines: upgrade revenues for Delta’s additional legroom Comfort+ seating
section generated $125 million in 4Q 2015, and the airline expected these revenues to grow.! Spirit
Airlines earns more than $110 million, or 5% of total operating revenue, from seat assignment fees.?

Baggage fees provided nearly $1.5 billion for American Airlines in 2016.3

Most research on airline ancillary services focuses on how passengers value the services (e.g. Espino
et al. (2008), Balcombe et al. (2009), and Mumbower et al. (2015)), or how the growth in services
has led to changes in average fares and passenger volumes (e.g. Ancarani et al. (2009), Scotti
and Dresner (2015), Brueckner et al. (2015), and Zou et al. (2017)). The economics literature
contains some work studying optimal pricing/bundling decisions for generic add-on products, with
a secondary focus on how consumers evaluate add-ons in conjunction with base goods (e.g. Gabaix
and Laibson (2006) and Shulman and Geng (2013)). Surprisingly little research has focus specifically
on how airline passengers consider ancillary services in conjunction with decisions on base ticket
purchases: the first real integration is Bockelie and Belobaba (2017), who propose two behavior
types: sequential and simultaneous. In the Bockelie and Belobaba framework, sequential passengers
are initially myopic about ancillary charges and select an itinerary and fare class based on non-
ancillary attributes, then consider ancillary services afterward. Simultaneous passengers, on the
other hand, have a single unified decision process that completely integrates ancillaries with fare

class and itinerary attributes.

Similarly, little work exists on integrating ancillary services into revenue management forecasting
and optimization. Initial RM research focused on ticket revenue maximization and assumed inde-
pendent demand streams for each fare classes. Although passengers clearly do make choices among
fare products, early fare structures had few enough classes and sufficient restrictions in place to

ensure each fare class was, more or less, purchased by a single segment of travelers. These models

'Delta Air Lines Earnings Call (4Q 2015)
2Spirit Airlines Form 10-K (2016)
3US DOT Form 41, Schedule P-1.2



maximized ticket revenue by flight leg (e.g. EMSR (Belobaba and Weatherford, 1996) or leg DP
(Lautenbacher and Stidham, 1999)) or across networks (e.g. DAVN (Smith and Penn, 1988) or
ProBP (Bratu, 1998)).

As low cost carriers have grown and implemented less restricted fare structures, this independent
demand assumption has been challenged. A growing body of RM-related optimization and forecas-
ting research has attempted to account for passenger choice amongst various fare classes. Talluri
and van Ryzin (2004) propose a single-leg dynamic programing formulation that explicitly assumes
a general model of passenger choice. They show that the optimal solution relies on a series of

efficient sets.

Forecasting with passenger choice is more complex than with independent demand, because de-
pendencies between classes must be considered. Hopperstad and Belobaba (2004) develop the
Q-forecasting process for completely unrestricted fare structures, in which an airline forecasts total
demand for a flight /market at the lowest fare class (denoted “Q”), and then uses estimated sell-up
rates to partition that demand into higher-value fare classes. Boyd and Kallesen (2004) proposed
separately forecasting yieldable demand (where passengers only purchase their preferred fare class)
from priceable demand (where passengers purchase the least expensive fare offered, regardless of
the restrictions), an approach known as hybrid forecasting (HF'). The yieldable demand segment
is forecasted with traditional (independent demand) standard forecasting methods; the priceable

segment with a Q-forecast.

Fiig et al. (2010) and Walczak et al. (2010) developed marginal revenue transformations and mar-
ginal demand transformations for the inputs to the RM optimizer based on a model of customer
choice. The transformations feed the optimizer with the expected incremental revenue or demand
to be captured by opening an additional fare class, taking into account the potential for buy-down.
These transformations allow any independent-demand revenue management optimization model
to be adapted to account for passenger choice, enabling traditional RM systems to operate in an
unrestricted or semi-restricted fare environment. The operationalized form of the marginal revenue
transformation is often referred to as fare adjustment (FA) and paired with hybrid forecasting as
HF/FA. Together, these extensions and models provide a mechanism to directly incorporate choice

behavior into RM models.

Previous work incorporating ancillary revenue streams into revenue management models is limited.
The only detailed theoretical work found in the literature is Zhuang and Li (2012). They develop a
dynamic programming formulation for hotel casinos to combine room revenue with gaming revenue,
equivalent to an independent demand, multiple fare class, single leg problem. The need to account
for ancillary revenue streams in RM, though, has long been acknowledged (Phillips, 2005). Metters
et al. (2008) reports that Harrah’s, a hotel casino chain, operates its hotel revenue management
system on expected total nightly contributions—the amount that an individual spends on a hotel

room plus their expected gambling losses. No mathematical or numerical details are provided.



The most relevant total RM work is that of Hao (2014), who simulates the revenue performance of
a total revenue optimization heuristic (which we call the optimizer increment (OI)) in a two-airline
competitive environment. In Hao’s simulations, passengers are assigned an expectation of ancillary
“spend” based on their market and selected fare class, and airlines always collect the expected
ancillary spend of every passenger. Passenger choice is not affected by the ancillary offer. Hao
finds that the heuristic leads to more low-fare seat availability, which increases bookings in lower

value fare classes and decreases bookings in higher value fare classes.

To summarize, although there has been recent focus on the value of ancillary services, and on
the importance of accounting for passenger choice in RM models, there is no work that directly
connects the two concepts. We develop a single leg RM optimization and forecasting model to
address this gap, using a flexible customer choice model. Our model explicitly accounts for ancillary
revenues and their impacts on passenger choice. We discuss the significant practical marketing and
distribution constraints that restrict the types of offers and that airlines can sell, and show how
our model can be restricted to produce booking policies that can be implemented under these
conditions. We develop two heuristics that can be used to convert existing RM models to total
revenue management and we show that under specific choice models our heuristics are equivalent to
existing total revenue optimization methods, but that in general our models provide an additional
level of specificity. We describe additional approximations and processes that may be required
to operationalize our models, and finally assess their performance in detail using the Passenger
Origin-Destination Simulator, finding that our models produce revenue gains across a variety of

environments.

The remainder of this paper is organized as follows. Section 2 presents our model formulation,
discusses practical constraints, introduces our two heuristics, and investigates their equivalence to
previous approaches. Section 3 addresses challenges that may be encountered in implementing our
heuristics and proposes two solution processes: one addressing the presence of inefficient booking
policies, another providing a demand forecasting module. Section 4 presents our simulation results,
providing an overview of the software used and the simulation environment. Section 5 provides a
short introduction to New Distribution Capability and describes how our model could be used as
the basis for an NDC-style offer generation engine. We conclude with a summary in Section 6 as

well as thoughts on potential future work.

2. Model Formulation

We consider a single airline, single flight leg network, with multiple fare classes and multiple an-
cillary services. The fare classes are indexed 1,...,k,...,npc and ordered by decreasing fare; the
fare for class k is fi, so fi > fa > fix > fnpe. The airline has grouped its ancillary services into

purchasable combinations 0,1, ..., m,...,nconmp, where set 0 corresponds to the set of no ancillary



services. These combinations are formulated subject to the airline’s marketing policies and goals
(and ensure that passengers combine ancillary services in a sensible manner, such as a prohibiting
a second checked bag without also buying a first checked bag); the set My C {0,1,...,ncomn}
lists the combinations that are permitted in class k. Combination m of ancillary services purchased
in conjunction with fare class k has price ag,,. For modeling convenience, we assume that the fare

class 0 corresponds to a decision by the passenger to not fly.

Time is discrete and counts down to departure, which occurs at ¢ = 0. We assume that demand
has a Poisson distribution, that time slices are small enough that there is at most one arrival per
slice, and the probability of an arrival during slice ¢ is A;. Capacity x is the number of unsold seats,
which constrains the total number of sales. We assume that individual ancillary services have no
capacity constraints and have a negligible marginal cost to the airline. We assume no cancellations

or overbooking.

The airline’s booking policy for each time and capacity state (¢, x) is an offer set O. We define an
offer (k,m) € O as a specific fare class k and combination m € My, of ancillary services; a consumer
purchases exactly one offer in its entirety from the offer set. The offer (0,0), which corresponds to
the no-fly option, is always included in the offer set. Ancillary services are considered “optional”
for a fare class if there are offers for that class in the offer set both with and without the ancillary

service.

We assume that consumers make choices according to a flexible and general choice model, where
the probability that a consumer chooses a particular offer is a function of the booking policy in
effect and the time at which the consumer arrives in the booking process. We specify this choice
model in terms of choice probabilities Py,,:(O), which is the probability that a consumer arriving
at time ¢ chooses offer (k, m) when presented with offer set O, with Py, (O) = 0 if (k,m) ¢ O. The
exact structure of this choice function can vary by context; two potential models are the sequential

or simultaneous behaviors described by Bockelie and Belobaba (2017).

Multiple consumer demand segments may be present, each with their own choice function. However,
we assume that the airline cannot provide different booking policies to these segments, and so the

probabilities Py, (O) reflect a weighted average of the segments arriving at time t.

The probability that the airline sells offer (k, m) during time ¢, given that it has booking policy O in
effect, is A\t Pgme(O). The probability that the airline sells nothing at time ¢ is (1 — ) + A\ Poot(O),
which reflects that the lack of sale may be due to no arrival, or because the consumer chose not
to fly. The total probability of sale T'P; for a particular booking policy is the probability that an

arriving consumer purchases anything from the policy, and is:

TR(O)= > Puu(0) (1)
(k,m)eO



Likewise, the total expected revenue T'R; from an arriving customer presented with policy O is:

TR(O)= > Prmt(O)(fr + akm) (2)
(k,m)eO

The airline selects the booking policy that maximizes the total expected revenue to come V in

future time periods via the Ancillary Choice Dynamic Program (ACDP):

Vit,z) = max{ Z APt (O) (fre + agm + V(E— 1,2 — 1))
(k,m)€0O

+ (AePoot(0) +1 = A) VI(E - 171’)} (3)

We define a bid price function AV (¢,x) = V(t,x) — V(t,x — 1) as the marginal cost of capacity and

can rewrite Equation 3 in simpler terms:

Vit,z) = = max { Z APt (O) (fre + agm — AV (t — 1 x))} +V(t—-1,2) (4)
(k,m)eO

The airline chooses the one offer set, or booking policy, O in each time and capacity state that
maximizes the total expected revenue earned from that time and capacity state, minus the cost
of consumed capacity, plus the maximum expected revenue to come in future time periods. For
modeling convenience, it is possible that the airline would only “offer” the no-fly option. This
function is solved recursively, with the boundary conditions V(0,z) = 0 and V (¢,0) = 0: no future

revenue can be earned when there is no time and/or capacity remaining.

We can redefine an offer (k,m) as a product j sold by the airline, with price r; = Te() + aG)mG)
where k(j) and m(j) map the product index to the fare class and ancillary comblnatlon 1ndlces.
Product j has purchase probability Pji(O) = Py(j) m(;)(O) when the airline is selling the set of

products O. We can now rewrite Equation 4 as:
V(t,x max{Z)\t :4(0)(rj — AV (t — 1,3;))} +V(t—1,2) (5)
Jjeo

which recovers the (time-varying) extension of the choice-based dynamic program proposed by

Talluri and van Ryzin (2004), although our use case contains the addition ancillary dimension.



Talluri and van Ryzin prove several important points about the optimal solutions to Equation 5

(in the non-time-varying case):

1. When input parameters A\, Pj(O), and r; are known and accurate, and when demand is
Poisson, the solutions to Equation 5 are optimal booking policies.

2. The optimal policies are always one of the efficient sets.

Because our model is mathematically equivalent, the same conclusions hold.

An efficient set, or efficient policy, is one which maximizes total expected revenue for any given
total sale probability, or is part of a linear combination of policies that maximizes total expected
revenue for any given total sale probability; the linear combination is, in practice, equivalent to
alternating between booking policies. Talluri and van Ryzin define a policy O as inefficient in time

slice ¢ if there exists a set of policy weights a;(S), with > v a:(S) = 1, such that:
TP,(0) > > o(S)TP(S) and TRy(0) <> (S)TRy(S)
VS VS

otherwise O is efficient in time ¢ (Talluri and van Ryzin, 2004, Section 3.1). In other words, a set is
inefficient if there is a weighted combination of other sets with a smaller (or equal) sale probability
and a greater total expected revenue. The no-fly-only policy (offering (0,0) in our notation) is

always efficient.

We can index and order the efficient sets in time ¢ by increasing sale probability O14, ..., Onyg,
with TP;(0;¢) < TPi(Ojt14); the sets are therefore also ordered in terms of increasing expected
revenue (Talluri and van Ryzin, 2004, Proposition 3). Fiig et al. (2010), Walczak et al. (2010),
and Gallego (2013) develop marginal revenue and marginal demand transformations to convert
Equation 5 into an equivalent independent demand formulation. We extend these ideas to the
ancillary dimension as the Ancillary Marginal Demand transformation (AMD, Equation 6) and

Ancillary Marginal Revenue transformation (AMR, Equation 7):
dit = M (TF(Oit) = TFR(Oi-14)) (6)

7= TR(Oiy) — TR(Oi—14)
" TP(Oir) — TP(Oi14)

(7)

where dj; is the marginal, or additional, demand that can be accommodated and f}, is the marginal
total revenue per unit of capacity that can be earned by moving from policy O;_1; to O in time ¢,
and we define TR;(Op ) = TP;(Op¢) = 0. Fiig et al. (2010) show that these marginal unit revenues



are decreasing in ¢, and that the optimal policy in time ¢ is to offer the set O; ; with the smallest

expected revenue greater than or equal to the bid price:

iy = max{i | fi, > AV (t,z)}

2.1. Practical Constraints and Limitations

Airline marketing policies and distribution technology impose significant practical constraints on
the types of offers and offer sets that airlines can sell. Traditionally, airlines have sold tickets
to consumers directly (through the airline website, call center, and ticket offices) and indirectly
(through travel agents and online travel retailers). Airline sales through indirect channels are
subject to the technical limitations of distribution technology, and sales through all channels are
potentially subject to commercial agreements with various retailers. In practice, for many airlines,
the same booking policy must be in place for consumers shopping in all channels (direct and

indirect).

Indirect sales are often made through a Global Distribution System (GDS), which serves as a
content aggregator. Approximately 50% of bookings worldwide are made through a GDS, and
therefore the structure of GDSs has a significant impact on how airlines sell travel (Taubmann,
2016). A consumer makes a shopping request to a travel retailer (such as a human travel agent,
or an online travel agent like Expedia). The travel retailer then requests search results from a
GDS. The GDS draws upon schedule data from a third party (Official Airline Guide, OAG), fare
and pricing data from a third party (Airline Tariff Publishing Company, ATPCO), and availability
data from airlines. The airline availability data lists the number of seats available in each booking
class. The GDS then combines all of this information to assemble the travel options returned to

the retailer (and in turn to the consumer). Figure 1 shows a schematic of this process.

Airlines are responsible for providing their schedules to OAG and fares to ATPCO, and can update
the data as necessary. However, the only “real time” control that the airline has in this process
is the availability response. Thus, the airline can only control products at the fare class level. In
the example in Figure 1, the airline has responded that fare classes Y, B, and M are available, and
that the airline sells two ancillary products, BAG1 and BAG2. The airline cannot dictate in real
time how those booking classes and ancillary services can be combined: if the airline wants to sell
BAG1 and BAG2 to passengers booking in all three fare classes in general, the booking policy must
always permit an optional BAG1 and BAG2 for classes Y, B, and M.* We term this constraint fare

class completeness, and say that, to comply with traditional distribution system architecture, the

Tt is possible that the airline marketing policies would offer some ancillaries complimentary to some fare classes,
or would prohibit their purchase in other fare classes. These restrictions can be implemented through fare filing (and
would affect the composition of My), but cannot be generated in real time.



Figure 1: Schematic of a traditional distribution system, where consumers request travel options from a travel retailer,
who then passes the request to a Global Distribution System. While the airline supplies schedules and fares/prices
to OAG and ATPCO, the only real time request to the airline is for fare class availability. Search result image credit:
https://www.google.com/flights.

offer sets considered by ACDP must be fare class complete.

Definition 1 (Fare Class Completeness). An offer set O is fare class complete (FCC) if and only if,
for every fare class included in the set, all possible offers based on that fare class are also included
in the set: if (k,m) € O for some m € My, then O is FCC if and only if (k,m’) € O for all m’ € M.

In addition, we impose the practical constraint that offer sets must be nested by fare order (a

common assumption in many of today’s revenue management systems):

Definition 2 (Nesting by Fare Order). An offer set O is nested by fare order (NFO) if and only
if, for every fare class included in the set, all fare classes with a higher priced fare are also included
in the set: if (k,m) € O for some m € My, then O is NFO if and only if (j,m’) € O for all j < k

and for some m’ € M;.

Offer sets that are both fare class complete and nested by fare order are marketable by airlines

within traditional distribution frameworks.

2.2. Ancillary Marginal Demand and Ancillary Marginal Revenue Heuristics

With the constraints described in the previous section, we can simplify our notation: the airline uses
Equation 3 to choose a fare class complete, nested by fare order booking policy, which is equivalent

to choosing a lowest available fare class with no RM-imposed limitations on ancillary purchase


https://www.google.com/flights

options.® We denote this policy simply as k, which in our earlier notation is equivalent to the set
O ={(i,m) | Vi < k,Vm € M;}. Following Fiig et al. (2010) and Walczak et al. (2010), we propose
using AMD and AMR, which are optimal as inputs to an independent demand dynamic program,
as heuristics to transform the demand and revenue inputs for existing (independent demand) static
RM optimizers, such as EMSR. These systems are typically designed for fare-class level control,
which is why we focus on the case where the airline must choose a fare class complete, nested by

fare order policy to implement.

Using AMD and AMR as heuristic input modifiers provides an easy method to obtain the benefits of
ancillary-awareness and choice-awareness without the need to significantly modify the core processes
of the RM optimizer. The AMD demand corresponds to the incremental demand accommodated by
opening class k, and the AMR fare to the incremental total revenue per unit of capacity earned by
opening class k. We initially assume that each of these FCC/NFO policies is efficient, which allows
the AMD and AMR outputs to give an adjusted demand and fare for each fare class, minimizing
the need to modify the optimizer structure. We discuss the case of inefficient policies in Section
3.1. We express the total sale probability and total expected revenue for these booking policies as
TP, (k) and TR (k), and the heuristic versions of AMD and AMR are:

Ancillary Marginal Demand Transformation. The heuristic marginal demand dj, ; associated
with moving from fare class complete and nested by fare order booking policy k£ — 1 to k in time

slice t is:

dit = M (TPy(k) — TP(k — 1)) (8)

Ancillary Marginal Revenue Transformation. The heuristic marginal total revenue f,g’t as-
sociated with moving from fare class complete and nested by fare order booking policy k — 1 to k

in time slice ¢ is:

TRi(k) — TR,(k — 1

fie = TP,(k) — TP,k —1) )

In practice the airlines collect booking data, generate forecasts, and estimate parameters at various
Data Collection Points (DCPs), which aggregate many time slices. In our simulations (Section 4),
we break the booking window into 16 DCPs. We assume that choice probabilities and demand

arrival rates are equal for each time slice within a DCP, and we express these parameters in terms

of DCPs:

5To reiterate, ancillary purchase options for a given fare class could be limited by pre-specified marketing policies.

10



)\t = )\dcp“ B,m,t(k) = Pi,m,dcpt(k')a TPt(k) = TPdcpt (k)

(10)
TRt(k) = TRdCPt (k)7 fli:t = flle,dcpt
where dcpy is the DCP that contains time slice {. We will typically refer to these quantities by DCP

only, without reference to any particular time frame.

Gallego (2013) cautions that this heuristic approach is no longer an optimal solution, as the assump-
tions of the existing RM model are likely violated. For example, EMSR assumes that all low-fare
demand arrives before high-fare demand, but under the general choice model we have incorporated
there is no requirement that this assumption will hold. In addition, EMSR (typically) assumes

normal demand distributions instead of Poisson demand distributions.

Despite the misalignment of these assumptions and loss of optimality, we believe (and our simulation
results indicate) that the AMD and AMR heuristics can still provide a significant revenue benefit

over traditional RM models when passengers make choices among fare classes and ancillary services.

2.8. Equivalence to Other Models

In this section we show that, under certain choice model conditions, the AMD and AMR heuristics
are equivalent to the optimizer increment (OI) and OI combined with the (non-ancillary) marginal

demand and revenue transformations.

The optimizer increment is a total revenue optimization heuristic for existing RM models based
on supplying the optimizer with an adjusted fare the includes the expected ancillary revenue per

passenger:

iy = fr + Ghdcp (11)
where f,g%lcp is the OlI-adjusted fare for class k in DCP dcp and ag 40 is the expected ancillary
revenue per booking in class £ in DCP dcp. In practice, a would likely be estimated based on
historical ancillary purchase data and could be aggregated across DCPs. No change is made to

demand estimates.

The (non-ancillary) marginal demand and marginal revenue transformations (MD) and (MR) have
the same structure as AMD and AMR Equations 8 and 9, except they rely on TPC;V[CPR(IC) and

TR%f(k), which exclude the ancillary dimension:

k
TPy (k)= > Pimdep(k) (12)
i=1 meMj,

11



dcp Z Z szdch (13)

=1 meMk

When these approaches are combined, the optimizer increment occurs before the expected revenue

calculation:

k
TRfi)c;_‘—MR(k) = Z Z RL,m,dcp ]:;(zllcp Z Z Pz m dcp fk + ag dcp) (14)
i=1 meMy i=1 mEMy

There is no additional change to total sale probability, so:

TP ME(k) = TPl (k) (15)

2.3.1. Independent Demand Model

We first consider the independent demand choice model, in which each arriving customer has one
preferred fare class k* and combination of ancillary services m*. If (k*,m*) is included in the
airline’s booking policy, the customer purchases it. Otherwise, they choose the no-fly option. We
denote by g m.dcp the probability that an arriving consumer in DCP dcp has preference (k,m).
Then, the independent demand model is specified by the choice probabilities:

qi,m,dcp 1 < k
f)i,m,dcp(k;) = (16)
0 otherwise
Theorem 1. With an independent demand model, the AMR heuristic has the same expected value
as the optimizer increment: f,’fgg)R f,’godlcp, where fAME s the AMR adjusted fare and f'©7 is

the optimizer increment adjusted fare.

Proof. We first note that with the independent demand model T' Py, (k) = Zle > men; Gi;m,dep and
TRicp(k) = Zf;l > men; Gi,mdep(fi + @im). The expected ancillary revenue ay 4, from a booking
in k class during DCP dcp is:

12



Ak, dep = Z A Pracp(buy m | book k)

B Z Prgep(buy m N book k)
B o Prgep(book k)

mEMk
Z a qk,m,dcp
= km
meMy Zm’GMk qumldep

o ZmeMk ak,ka,m,dcp

ZmGMk qk,m,dcp

We can now show that the AMR fare is equal to the filed fare plus the (DCP-specific) expected

ancillary revenue per passenger:

f/AMR _ TRdcp(k) - TRdcp(k‘ — 1)
BT TPy (k) = TPacy(k — 1)

k k—1
. Zi:l ZmeM,' Qi,m,dcp(fi + ai,m) — 2.i=1 ZmEMi Qi,m,dcp(fi + ai,m)
- k k—1
i=1 2ameM; Qimdep = 2oimi 2omeM; Gim.dep
. fk ZmGMk qk,m,dcp + ngMk qk,m,depQk,m (17)

ZmEMk qk,m,dcp
ZmEMk Ok . mqk,m,dcp

ZmEMk qdk,m,dcp
= fr + Gk,dep
IAMR _ r/OI . . .
Thus, filuep = Jfidep and the two formulations lead to equivalent adjusted fares. O

Remark. With the independent demand model, the ancillary marginal demand transformation has
no effect on forecasting: the marginal demand associated with opening a class is the entire demand

for the class, since passengers either purchase their (one) preferred class or do not fly.

2.8.2. Sequential Demand

We now consider the case when passengers exhibit sequential behavior, as defined by Bockelie and
Belobaba (2017). Under the assumption that preferences about different types of fare class attri-
butes and/or ancillary services are independent of each other, all sequential passengers booking in
class ¢ in DCP dcp have a constant conditional probability w,,; 4y of purchasing ancillary combi-

nation m, regardless of which booking policy k& > i is in effect. Therefore, the choice probabilities

13



satisfy the following equation:

Wi, dep = PTaep(buy m | book i under policy k)
P, k
- b dep () Vi <k (18)
Zm’GMi Pi,m’,dcp(k)
Theorem 2. With a sequential demand model that satisfies Equation 18, the AMR heuristic has the
same expected value as the optimizer increment combined with the (non-ancillary) Marginal Revenue
transformation defined by Fiig et al. (2010) and Walczak et al. (2010): ,%%R f;fodlc;MR, where

fAME G5 the AMR adjusted fare and f'OTME js the optimizer increment with marginal revenue

transformation adjusted fare.

Proof. With sequential demand, the expected ancillary revenue in DCP dep for a booking in class i
1S Qi dep = D meM; GimWpm)i,dep; therefore f,’c%{:p = [kt meM; ¥imWm|idep- For the remainder of this
section, we will refer to Equations 1 and 2 (and the DCP variants in Equation 10) as TPAME (k)

dep
and TRfC]]‘f R(k); the AMR adjusted fare is therefore:

TRAME(E) — TRIME(E — 1)

f’/c/ilM R __ dep dep
C,
P TPIME(E) — TPIME(E — 1)

The optimizer increment/marginal revenue transformation adjusted fare has the same structure:

TROI+MR(]{?) _ TROIJrMR(k o 1)

f/OI +MR __ dcp dep
k,d OI+MR OI+MR
@ YWPdcpJr (k) T’PdcpJr (k 1)
To prove f,’ﬁ‘%%R f,;OdICZM R we show that the formulations have equivalent total sale probabilities
and total expected revenues: TPC‘lg/[R( ) = TPdOCIIfMR( /) and TR?C][‘)/[R( ) = TRdOC;JrMR(j). Total

sale probability for the marginal revenue transformation is given by Equation 15:
TP ") Z P aepJ Z > Pimacyi
i=1meM;

which is equivalent to TPd‘g,V[ R(4) as defined in Equations 1 and 10. Next we show that the total

expected revenues are equivalent:
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OI+MR IOI
TRdcp Z PZ dCP 7, ,dep

(( Z P mdcp ) (fz + Z ai,mwmi,dcp))
1 meM; meM;

2me; imPim,dep (k) ‘
(fl ( Z Zmdcp(k)) " Zm’EMi Pi,m/,dCP(k) Z Pl’m’dCP(k))

meM; meM;

I
.
= 1
I

-
Il

I
M=

@
Il
—_

Z szdcp fz“‘azm)
1 meM;

a“c%R(k)

I
; i M»

Since TPAMRE — T pOI+ME oy TRAME — TROITME {4 the sequential choice model, the two

approaches have the same expected adjusted fares (and same adjusted demands). O

Under a general choice model, Equation 18 will not hold: the probability that a passenger purcha-
ses a particular ancillary combination, even given that they book in class k, may vary based on
the other classes offered. In this case, AMR and the optimizer increment plus marginal revenue
transformation will lead to different adjusted fares and, potentially, different booking policies. Our
AMD and AMR formulations, by explicitly including the ancillary dimension of passenger choice,
can more precisely measure the marginal total revenue (or demand) associated with opening a fare

class than the previous approaches.

3. Operationalization

In this section we discuss additional processes and assumptions that are necessary or helpful to
implement the AMD and AMR heuristics. First, as noted above, the AMD and AMR transforma-
tions described in Equations 8 and 9 are only valid if the booking policies k and k& — 1 are optimal
solutions to the original Equation 3. As described by Talluri and van Ryzin (2004), the solutions to
Equation 3 must always be efficient sets, and it is possible that the booking policies k and/or k — 1
are not efficient. Borrowing from previous Fare Family research, we propose several convex hull
approximation methods, which we will refer to as “gap-filling” methods, to cope with inefficient
booking policies (see Hopperstad (2008) and Fiig et al. (2012)). Second, the ACDP formulation
assumes that demand arrival rates Aq., are known; in reality, forecasting demand is a significant
challenge for airlines. We develop an AMD Forecasting Model below to help cope with this chal-
lenge, particularly when the heuristics are coupled with an optimizer that requires a forecast of

demand-to-come by fare class.
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3.1. Gap-Filling

In cases where a fare class complete, nested by fare order policy k is not efficient, AMR adjusted
fares will be inverted (i.e. the adjusted fare for class k may be less than the adjusted fare for class
k+1).

The optimal approach to dealing with these inefficient policies is, of course, to not offer them. Ho-
wever, our proposed use case for the AMD and AMR heuristics is to feed adjusted demands and ad-
justed fares to an existing RM optimizer (such as EMSR) to provide ancillary and choice-awareness
without significantly revising the core of the optimization procedure. As existing RM optimizers
are based on fare class demands and revenues, it is important that the output of AMD/AMR can

be expressed in terms of fare classes as well: each class needs an AMD demand and an AMR fare.

We propose three different mechanisms, which we term gap-filling methods, to deal with inefficient
booking policies while maintaining compatibility with the structure of existing RM optimizers. The
first two, vertical and horizontal gap-filling, involve approximating the airline’s computed choice
probabilities to move the inefficient policies onto the efficient frontier. The third mechanism, exclu-
sion gap-filling, involves strategically modifying the AMD/AMR outputs to prevent the optimizer

from producing an inefficient booking policy.

The outputs of gap-filling are the adjusted total sale probabilities TPC’le(k) and adjusted total
expected revenues TR&cp(k‘) for each DCP and for each booking policy. These adjusted TP’ and
TR’ values are used in subsequent AMD/AMR processes.

To illustrate each of these mechanisms, we consider a running example with six fare classes and one
ancillary service (corresponding to DCP 2 of the simulation results presented in Section 4). The
computed total sale probabilities and total expected revenues are listed in the upper-left portion
of Table 1, along with the associated EMSR booking limits. Note that without any gap-filling, the
AMR adjusted fares for FC 2 and FC 5 are inverted.

Figure 2 shows a plot of the efficient frontier and the fare class complete/nested by fare order book-
ing policies {1}, {1,2}, and {1, 2, 3}; the policy of offering classes 1 and 2 is inefficient. Graphically,
the AMR adjusted fare is the slope of the line segment connecting two adjacent policies. Vertical
and horizontal gap-filling operate by shifting the policy FC 1-2 until it falls on the segment con-
necting FC 1 and FC 1-3. Vertical gap-filling shifts the policy up; horizontal gap-filling shifts the
policy left. Other (diagonal) gap-filling policies would be possible, but are not investigated here.

8.1.1. Vertical Gap-Filling

With the vertical gap-filling approximation, the airline’s computed total expected revenue TR e, (k)

is increased for inefficient policies until the policy falls on the efficient frontier. AMD forecasting is
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Figure 2: Portion of an example convex hull, showing efficient policies in blue circles and inefficient policies in red
squares. The slope (AMR adjusted fare) of various segments is indicated, with emphasis in red for inverted fares and
in blue for gap-filled fares.
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Table 1: Example AMD mean demand fix, AMR fares f}, and associated EMSR, booking limits (BL) for DCP 2 with various gap-filling methods. Inverted fares are
emphasized in red; changes from no gap-filling emphasized in blue with the size of the change indicated in parentheses. (Forecast volume mean fi = 85, forecast volume

standard variance 2 = 900, and capacity remaining 2 = 110).

No Gap-Filling

Vertical Gap-Filling

k TP(k) TR(k) [ 1 BL TP (k) TR (k) [k fr BL
1 15.5% $81 13 $522 110 15.5% $81 13 $522 110
2 21.4% $89 5 $132 102 21.4% $91 (+2.3%) 5 $168 (+27%) 102
3 30.1% $105 7 $192 101 30.1% $105 7 $168 (-12%) 100 (-1)
4 52.8% $134 19 $126 96 52.8% $134 19 $126 96
5 71.7% $148 16 77 85 1.7% 8149 (+0.4%) 16 $80 (+4%) 86 (+1)
6 100.0% $172 24 $82 78 100.0% $172 24 $80 (-2%) 78
Horizontal Gap-Filling Exclusion Gap-Filling
k TP(k) TR(k) [ 1 BL TP (k) TR (k) [ i BL
1 15.5% $81 13 $522 110 15.5% $81 13 $522 110
2 20.1% (-1.2pt) $89 4 (-21%) $168 (+27%) 102 n/a n/a 0 (-100%) $168 (+27%) 102
3 30.1% $105 9 (+14%) $168 (-12%) 101 30.1% $105 12 (+67%) $168 (-12%) 102 (+1)
4 52.8% $134 19 $126 96 52.8% $134 19 $126 96
5 71.0% (-0.7pt)  $148 15 (-4%) $80 (+4%) 86 (+1) n/a n/a 0 (-100%) $80 (+4%) 85
6 100.0% $172 25 (+2%) $80 (-2%) 78 100.0% $172 40 (+67%) $80 (-2%) 85 (+7)




not directly affected by this process, as the total sale probabilities remain unchanged. It is important
to note that this approximation changes only the airline’s perception of expected revenue; the airline
does not change fares, fare class restrictions, or ancillary prices, so actual passenger choice will not
be affected.

The vertical gap-filling approximations are:

T Piep(k) = T Pycp(k)

TRcp(k) if k is efficient

TRacp(k+1)—=T Racp(k—1)

TRy, (k) = :
TRaep(k —1) + TPer (A1) =T Pes (F=T) (T Pyep(k) — T Pyep(k — 1))  otherwise

The result of vertical gap-filling is shown in upper-right section of Table 1. With the example
parameters, vertical gap-filling increases TR for FC 2 by 2.3% and for FC 5 by 0.4%. These small
changes, however, translate into a 27% increase in the adjusted fare of FC 2, as well as smaller
changes for the adjusted fares of FC 3, 5, and 6. In addition, the EMSR booking limits change;

one fewer seat is permitted to FC 3 and one additional seat is permitted to FC 5.

3.1.2. Horizontal Gap-Filling

With the horizontal gap-filling approximation, the total sale probability TPy, (k) for inefficient
policies is decreased until the policy lies on the efficient frontier. AMD forecasting is directly
affected by this process. While the airline does not adjust T'Rg.,(k), because of the change to
T Piep, AMR adjusted fares also change. The AMR fares from horizontal gap-filling will be equal
to those of vertical gap-filling because adjusted fares are dictated by the properties of the efficient

booking policies in both cases.

The horizontal gap-filling approximations are:

T Pyep(k) if k is efficient

TPycp(k4+1)—T Pycp(k—1)

T Piep(k) =
TPiep(k—1)+ TRy e+ 1) =T Racr (F=1) (TRgcp(k) — TRgep(k — 1))  otherwise

TRZlcp (k) - TRdCP (k)
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In our running example, shown in the bottom-left of Table 1, the change to total sale probabilities
due to horizontal gap-filling is small—a decrease of 1.2 percentage points for FC 2, and of 0.7 points
for FC 5. However, these small changes again have large impacts on AMD and AMR: adjusted
demand decreases 21% for FC 2 and increases 24% for FC 3; there are also smaller changes for FC
5 and FC 6. The net result of horizontal gap-filling, in this example, is an increase by 1 in the FC
5 booking limit compared to the no gap-filling case. Recall that vertical gap-filling increased the
FC 5 booking limit by 1, but also reduced the FC 2 booking limit.

3.1.8. Ezxclusion Gap-Filling

Exclusion gap-filling is the most mathematically-correct approach to dealing with inefficient policies
when AMD and AMR are used as heuristic input modifiers for existing RM optimizers. Exclusion
gap-filling is a multistage process that attempts to produce AMD demands and AMR, fares that

prevent the RM optimizer from selecting inefficient booking policies.

In the first stage, inefficient policies are discarded, and AMD demands and AMR fares are computed
using only the efficient policies. Next, demands and adjusted fares are filled in for the inefficient
policies: a demand of zero and an adjusted fare equal to the adjusted fare of the next efficient
policy. This process ensures that, at the time of optimization with EMSR, the inefficient policies

(in the case of this example, offering FC 1-2 or FC 1-5) will never be selected.

It is important to note that “FC 1-2” as an inefficient policy does not mean that consumers should
be prohibited from booking in FC 2; when FC 1-3 are available (which is an efficient policy, as

shown in Figure 2), consumers are free to choose to buy-up to FC 2 if they wish.

The bottom-right of Table 1 shows the effect of exclusion gap-filling on our running example. Note
that the AMR fares are equal to those produced by vertical and horizontal gap-filling. However,
the AMD demands differ from both methods; the exclusion gap-filling forecast has less high-fare
demand and more lower-fare demand (note that all demand from FC 2 in the no gap-filling case gets
moved to FC 3 with exclusion gap-filling; the same applies for FC 5 and 6). This leads exclusion
gap-filling to have less aggressive booking limits than the no, vertical, and horizontal gap-filling:
compared to no gap-filling, exclusion gap-filling increases the FC 6 booking limit by 7, and increases
the FC 3 booking limit by 1.

The adjusted total sale probability and adjusted total expected revenue from any of the gap-filling
methods will be used to compute AMR fares and AMD demands.

3.2. Demand Forecasting

Our AMD Forecasting Model provides an approach for estimating parameters for the distribution

of demand volume, based on historical bookings. This model is an extension of Q-Forecasting

20



(Hopperstad and Belobaba, 2004) to support generic fare structures and generic passenger choice
models. We propose a four step process, in which we convert historical booking observations into
estimates of historical demand volume, and then forecast future demand based on the historical

volume estimates. Note that this process occurs after any gap-filling.

1. Convert observed (historical) bookings to equivalent “Q”-bookings, which represents the num-
ber of bookings that would have been received in the past if all fare classes and all ancillary
services had been available. We assume that the airline has recorded which offer set was
presented to the consumer for each booking. The equivalent Q-bookings for DCP dcp on

previous departure day dep is given by:

Gbdep.den = nzF:C b dep,dep (19)
cp,dep —
neew k=1 TPc/lcp(k)

where npc is the number of fare classes, by, gcp,dep is the number of bookings received in DCP
dep on previous departure date dep when FCC and NFO booking policy k& was offered to
consumers, and gbgep dep is the equivalent Q-bookings for DCP dep on previous departure
date dep, and serves as the estimate for total demand volume for that DCP and day.

2. Detruncate historical observations for any instances where all classes were closed:

qAbdcp,dep = d(qbdcp,de]h Z) (20)

where qAdep’dep is the detruncated (unconstrained) equivalent Q-bookings for DCP dep on
previous departure date dep, d() is a detruncation function, and Z is a vector of other data
or parameters for the detruncation process, including whether or not all classes were clo-
sed. For details on detruncation methods, see Lee (1990), Wickham (1995), Skwarek (1996),
Weatherford and Polt (2002), and Queenan et al. (2007).

3. Forecast future demand volume distribution parameters based on detruncated historical equi-

valent Q-demand for ng4e, previous departure days:

1 Ndep
Hdep = n Z qbdcp,dep
dep dep=1
1 Ndep
2 . 2
Odep = 1 Z (qbdcp,dep - ,udcp)
Ndep dep=1

where fi4¢p is the forecast future demand volume mean for DCP dcp and chp is the forecast
future demand volume variance for DCP dep .

4. Partition demand within each DCP to each booking policy:

Hi,dep = Mdcp(TPcllcp(k) - TPc/lcp(k - 1))

O-lz,dcp = O-c%cp(Tchcp(k) - TPc/Zcp(k - 1))

21



Historical Bookings || Remaining Capacity

Choice
Probabilities

2
e
(@)

TR}, (k) [ o

Fare & Ancillary
Fee Structure

Booking Limits

Figure 3: AMD/AMR process diagram when used as a heuristic in conjunction EMSR. Inputs are shown in grey,
AMD/AMR processes and operations in blue, the RM optimizer in red, and the RM output in green.

For RM optimizers such as EMSR that utilize demand-to-come forecasts, instead of DCP-
specific forecasts, the demands must be aggregated across DCPs. The forecast of all future

demand to come, generated at the start of DCP dep, for policy k, is:

npcp npcrp
~ ~2 2
Mk dep = Z K. i Ok.dep = Z Ok,i
i=dcp i=dcp

and the total future demand to come from the start of DCP dcp (aggregating across all

booking policies) is:

nepc nepc
~ . ~ ~2 ~2
Hdep = Z Kk, dep Odep = Z Ok, dep
k=1 k=1

We use these aggregated-across-DCP demand parameters (fiy,qcp and &,%’ dcp) in our imple-
mentation of AMD and AMR with EMSR.

3.3. Process Summary

An overview of the complete AMD and AMR methodology, when used as a heuristic with EMSR, is
illustrated in Figure 3. The process requires input choice probabilities (P, acp(k)) for each of the
fare class complete/nested by fare order booking policies, fares and ancillary prices, and historical
bookings. The process returns AMR fares and AMD demand estimates (mean and variance) for
each class, generated at the start of each DCP. These adjusted fares and demands are fed to the
RM optimizer (along with remaining flight capacity), which then returns a booking policy in the

form of booking limits.
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4. Simulated Performance

In this section we utilize the Passenger Origin-Destination Simulator (PODS) to assess the perfor-
mance of our AMD and AMR heuristics. We provide summary results for a range of parameter
values, and detailed results for one illustrative case. In all cases we compare the performance of

AMD/AMR against previous ideas for total revenue optimization.

4.1. The Passenger Origin-Destination Simulator

The Passenger Origin-Destination Simulator is a numerical simulator designed to model the in-
teractions between passengers and airline revenue management systems, and is used to evaluate
the performance of various RM forecasting and optimization models. PODS consists of two in-
terdependent modules, as shown in Figure 4. The Passenger Module generates consumers within
origin-destination (OD) markets and assigns randomly drawn preferences and budgetary constraints
to each passenger. Consumers evaluate the itineraries, fare classes, and ancillary services available
to them at the time they are generated and, based on their preferences, book the option that is
most appealing (or do not fly if no options are within their budgetary constraint). Bockelie and
Belobaba (2017) describe the PODS consumer choice models in detail.

The Airline Module collects data on historical bookings, uses the data to forecast demand for future
flights, and then runs a revenue management optimizer to set booking policies for the network. A
key aspect of PODS is that airlines do not have access to the underlying demand generation
parameters; they must forecast demand based on observed bookings from previous (simulated)
departures. FEach airline in the simulation maintains its own booking database, forecasting, and
optimization systems. The decisions made by passengers affect the historical booking databases
and thus forecasting, optimization, and future availability decisions by the airlines. The decisions

made by airlines affect the availability given to passengers, and thus the future booking decisions.

We will use PODS to study the effects of the AMD and AMR heuristics for total revenue manage-
ment. Recent examples of other PODS studies include assessing the performance and impacts of

dynamic pricing (Wittman and Belobaba, 2018) and the influence of RM system users (Weather-
ford, 2016).

4.2. Single Airline, Single Flight Network

We utilize a single airline, single flight leg network within PODS for our studies. The flight has a
capacity of 130 seats. The airline offers one optional ancillary service and six economy fare classes,
denoted FC 1 (the most expensive and least restricted, $500) through FC 6 (the least expensive,

most restricted, and subject to advance purchase requirements, $125). The airline divides its
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Figure 4: Schematic of the PODS Simulator. Adopted from M. Wittman.

booking window into 16 DCPs, with the end of DCP 16 corresponding to departure. Forecasts are

generated and booking limits are re-optimized at the start of each DCP.

This network features two consumer demand segments, business and leisure. Business passengers
tend, although do not always, to have higher budgetary constraints, to book closer to departure,
and to be more averse to fare class restrictions (such as a Saturday-night stay, or non-refundability).
The average business passenger and leisure passenger booking curves, as well as the business/leisure
mix, are shown in Figure 5. Note that the early DCPs have a low proportion of business travelers
shopping, while shoppers in the later DCPs are predominantly from the business segment. Because
each PODS simulation covers many departure days, small changes in revenues (about 0.1%) or

bookings (about 0.1 per class) are statistically significant.

4.8. Experimental Outline

In all of our simulations, the airline uses EMSRD as its RM optimizer. As a baseline, we consider the
case where the airline optimizes based on filed fares and uses an independent-demand forecasting
model (see Belobaba and Weatherford (1996) and Littlewood (1972)). For AMD and AMR, we
assume that the airline has (accurately) estimated a passenger choice model, and can therefore
compute the probabilities P; ;, gep(k) as described in Equation 10. Unless otherwise noted, the
airline will employ Exclusion Gap-Filling when using AMD and AMR (because it shows the highest

revenue in our simulations, as shown in Section 4.4.1).

We will compare the performance of AMD and AMR against the baseline as well as three existing

approaches for accounting for ancillary revenue and/or passenger choice: the optimizer increment
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Figure 5: Cumulative average business and leisure consumer arrival curves, and the ratio of average business to leisure
arrivals within each DCP.

(OI), hybrid forecasting and fare adjustment (HF /FA), and a combination of the two approaches (OI
+ HF/FA). In our implementation of OI, the airline estimates ay, 4, based on historical purchases
aggregated across all DCPs. Recall that hybrid forecasting and fare adjustment are operationalized
versions of the (non-ancillary) marginal revenue and marginal demand transformations, where
demand is divided into two groups: product-oriented, which is forecasted with an independent
demand model and no marginal revenue transformation, and price-oriented, which is forecasted
with a marginal demand model and has a marginal revenue transformation applied to the fares
(based on a negative exponential sell-up curve); the final demand and fare values sent to the

optimizer are a combination of the price and product values.

We focus our detailed assessment of AMD/AMR on a representative case in which the ancillary
service has a price of $50, and both consumer segments have a mean valuation for the service of $50.
We assume that passengers in the simulation are aware of ancillary prices and incorporate ancillary
preferences into their decision making process (“simultaneous” behavior, as defined in Bockelie and
Belobaba (2017)).

The total probabilities T'Py.,(k) computed by the airline are shown in Figure 6. Early in the
booking window, the airline calculates that the probability of sell-up is low (as indicated by the low
total sale probability for FC 1, and reflecting the low proportion of business travelers). However,
later in the booking window, when the portion of business passengers is higher, the total sale
probability for higher-value classes increases, suggesting that more sell-up is possible. Note that
the total sale probability for FC 6 is always 100%, reflecting that all generated passengers in the

simulation can afford to purchase the lowest published fare.
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Figure 6: Total sale probability T Pacp(k) for each class as computed by the airline (prior to any gap-filling).

4.4. Results

Table 2 lists booking and ancillary purchase data for the baseline simulation. In the baseline
scenario, about 33% of passengers purchase the ancillary service, with a much higher purchase rate
in the higher value fare classes (46% for FC 1) than in the lower value fare classes (25% in FC 6);
likewise, the average ancillary revenue per booking is highest in FC 1 ($23) and lowest in FC 6
($12). Despite the lower ancillary purchase rate and lower average ancillary revenue, because fares
are lower in FC 6 than FC 1, the portion of total revenue derived from ancillary sales is highest
in the lower value classes (11% in FC 5) and lowest in higher value classes (4% in FC 1). For
reference, major US airlines report about 8% of total revenue from ancillary services, according to

the US Department of Transportation.®

The lower ancillary purchase rate in the lower value classes is driven by a fundamental behavioral
assumption in the Simultaneous choice model (Bockelie and Belobaba, 2017): passengers have an
overall budgetary constraint that limits their spending on the combination of fare and ancillary
services. Passengers booking in the lower value (and highly restricted) fare classes tend to have
lower budgets, which constrains their ability to afford ancillary services. These basic ancillary

purchase and revenue trends in the baseline case are similar in the other experimental cases.

The total revenue, load factor, and yield (expressed as revenue per passenger mile) for each of the
experimental cases (with AMD/AMR using exclusion gap-filling) are shown in Table 3. AMD/AMR

produces a revenue increase of 1.8% over baseline; HF /FA produces a gain of 1.2%, 0.6 pts less

5US DOT Form 41, Schedule P-1.2
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Table 2: Baseline booking and ancillary purchase data.

FC1 FC2 FC3 FC4 FC5 FC6 Total

Fare $500 $390 $295 $200 $160 $125 $203
Average ancillary per passenger $23  $22 %21 $22 %19 %12 $17
Portion of total revenue from ancillary 4% 5% % 10%  11% 9% 8%
Ancillary purchase rate 46%  44%  41%  43%  39%  25%  33%
Bookings 6 14 10 8 16 56 109

Table 3: Revenue, load factor, and yield for the baseline case and experimental cases.

Baselne Ol  HF/FA OI + HF/FA AMD/AMR

Total Revenue  $23,906  $23.876  $24,181 $24,171 $24,336
Load Factor 83.8% 83.9% 82.5% 82.6% 82.5%

Total Yield 21.95 21.90 22.54 22.50 22.70

Change from baseline

Total Revenue -0.1% +1.2% +1.1% +1.8%
Load Factor +0.1 pts  -1.3 pts -1.2 pts -1.3 pts
Total Yield -02% +2.7% +2.5% +3.4%

than AMD/AMR. Both AMD/AMR and HF /FA decrease load factor by 1.3 pts, and both increase
total yield, although the increase is larger for AMD/AMR (3.4%) than for HF /FA (2.7%).

The optimizer increment has a small negative effect on revenue: an 0.1 pt decrease compared to
baseline, and a reduction of the benefit of HF/FA by 0.1 pt. OI increases load factor by 0.1 pt
when used alone, and decreases the load factor loss due to HF /FA by 0.1 pt. Although the revenue
and load factor changes due to OI are small, they are directionally consistent with the results seen
in numerous studies within the MIT PODS Research Consortium (e.g. Bockelie and Belobaba
(2016)).

These revenue and load factor changes are driven by shifts in the booking mix, as shown in Figure
7. Both HF /FA and AMD/AMR reduce bookings in the lowest value class (FC 6), while increasing
bookings in the highest value class (FC 1). The methods differ in the magnitudes of changes:
AMD/AMR reduces bookings in FC 6 by about 2, while HF /FA reduces by 5. Changes in bookings
in higher value fare classes have a disproportionate effect on total revenue: recall that FC 1 has
a fare of $500, and FC 6 has a fare of $125, so each FC 1 booking is worth four times the ticket
revenue of an FC 6 booking. The FC 1 booking increase with AMD/AMR is worth six times the

revenue loss associated with the FC 6 booking decrease.

While both AMD/AMR and HF/FA reduce FC 6 bookings (which saves space for later arriving,
higher value FC 1 bookings), only AMD/AMR also reduces FC 5 bookings; HF /FA leads to an
increase in FC 5 (as well as FC 4). The booking changes by fare class due to OI are minimal, and

the changes with OI + HF/FA are approximately equal to the sum of the changes in the OI case
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Figure 7: Change in bookings vs baseline by fare class due to OI, HF/FA, OI + HF/FA, and AMD/AMR.

and in the HF /FA case.

The initial demand and ticket revenue forecast (generated at the start of DCP 1) is shown in
Figure 8. Compared to the baseline, AMD provides a lower demand forecast mean (by 15%),
but a higher demand forecast standard deviation (by 33%). Overall, the probability that demand
exceeds the aircraft capacity of 130 (a rough indicator of whether the capacity constraint should
restrict availability) is 24% for AMD, a reduction from the 39% of the baseline or 34% of HF /FA.
Despite the lower volume of demand with AMD, however, the value of demand with AMD is greater
because the composition of the AMD forecast is shifted toward FC 1. AMD produces an initial
forecast of ticket revenue (computed as a sum of demand for each class multiplied by the fare for
each class) 13% higher than the baseline, with a standard deviation 65% higher. A higher value
forecast, for the same demand mean and standard deviation and same optimizer fares, will lead to

more aggressive availability decisions and fewer low-value bookings.

In addition to the higher value forecast, the AMR adjusted fares are lower than filed fares, especi-
ally for the low value fare classes. The higher value forecast of AMD combined with the reduced
optimizer fares of AMR reduces availability of lower-value fare classes, as shown in Figure 9. Re-
ducing lower class availability forces consumers to buy-up to higher value classes, reducing load
factor and increasing yields (and in this case increasing total revenue). By explicitly accounting for
ancillary revenue and passenger choices, AMD/AMR can more precisely close classes. Note that
AMD/AMR has a smaller reduction in FC 6 availability than HF /FA, but a larger reduction in FC
5 availability (especially in DCP 7 and 8), leading to the booking shifts seen in Figure 7.
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Figure 8: Initial total demand and ticket revenue forecasts (generated at the start of DCP 1). Solid bars show forecast
mean; dashed error lines show forecast standard deviation. The forecast probability that demand exceeds capacity
(of 130) is indicated at the base of the solid bars.
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Figure 9: Availability (measured as the portion of time a class is available for sale) for FC 6 (left) and FC 5 (right)
for first 8 DCPs for the baseline, HF /FA, and AMD/AMR cases.
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Table 4: Revenue, load factor, and yield for the baseline case and each AMD/AMR gap-filling case.

Baseline None Vertical Horizontal Exclusion

Total Revenue  $23,906 $24,248 $24,299  $24,321  $24,336

Load Factor 83.8% 80.7%  81.5% 81.9% 82.5%

Total Yield 21.95 23.12 22.92 22.85 22.70

Change from baseline

Total Revenue +1.4%  +1.6% +1.7% +1.8%
Load Factor -3.1 pts  -2.2 pts -1.9 pts -1.3 pts
Total Yield +5.3% +4.4% +4.1% +3.4%

4.4.1. Effect of Gap-Filling

Table 4 lists performance data for each of the gap-filling mechanisms. Exclusion gap-filling produces
a revenue increase of 1.8% over baseline; AMD/AMR with the other gap-filling methods has a
smaller revenue gain, with the worst revenue performance when gap-filling is not used. Load factor
changes with AMD/AMR are inverse to total revenue changes: the largest revenue gain (exclusion
gap-filling) has the smallest load factor loss (-1.3 pts), while the lowest revenue gain (1.4%, no
gap-filling) has the largest load factor loss (-3.1 pts). All of the gap-filling methods have higher
revenue than HF/FA.

As shown in Figure 10, exclusion gap-filling, which has the highest revenue and is most mathema-
tically correct, has the smallest reduction on FC 6 bookings; the other gap-filling methods all have
FC 6 booking reductions of similar magnitude to HF /FA. In addition, exclusion gap-filling is the
only method that reduces FC 5 bookings; the other methods trade large FC 6 losses for smaller
FC 5 gains. This is an expected result; as shown in Table 1, exclusion gap-filling protects no seats
for FC 5, and therefore FC 5 and FC 6 have the same booking limit. In that example, exclusion
gap-filling has an FC 6 booking limit 7 seats greater than any of the other gap-filling methods,
include no gap-filling. Despite the greater booking limit for FC 6, though, exclusion gap-filling has
the second greatest increase in FC 1 bookings vs baseline (the additional space to accommodate
FC 1 customers is provided by accepting fewer bookings in FC 5 and 4 compared to the other

gap-filling mechanisms).

The differences in fare class booking changes amongst the gap-filling methods illustrate that no gap-
filling is the most aggressive form of AMD/AMR, followed by vertical gap-filling, then horizontal
gap-filling, and finally exclusion gap-filling. This variation in aggressiveness is a function of the
AMD forecast generated by each approach: recall that vertical, horizontal, and exclusion gap-
filling all have the same AMR fares. Horizontal gap-filling partially reduces demand forecasts for
inefficient policies (and increases the forecast for the next efficient policy); exclusion gap-filling
completely eliminates inefficient policy forecasts, and shifts all demand to the next efficient policy.

Thus, exclusion gap-filling will always have less aggressive availability, and will accept more FC 6
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Figure 10: Change in bookings by fare class vs baseline due to HF/FA and AMD/AMR with various gap-filling
settings.

bookings than the other gap-filling methods. The increase in FC 6 availability (relative to other
gap-filling) means less space is protected for FC 5 bookings, which produces the decrease in FC 5
(relative to both the baseline and other gap-filling methods) seen in Figure 10.

4.4.2. Sensitivity Assessment

In this section we assess the sensitivity of our results to the input ancillary prices and ancillary
utility parameters. We vary ancillary prices from $25 to $100, with mean passenger ancillary
utilities equal to 75%, 100%, or 125% of the ancillary price. We consider three combinations of
utilities: a leisure-oriented service, where leisure passenger mean utility is 125% of the ancillary
price and business passenger utility is 75% of the ancillary price, a business-oriented service where
the percentages are reversed, and an equally appealing service, with a mean utility of 100% of the

ancillary price for both segments.

The results of the previous section are consistent across the range of parameters tested. The change
in total revenue (vs baseline) is shown in Figure 11. The optimizer increment leads to revenue losses
on the order of 0.1% in all cases. Hybrid forecasting and fare adjustment provides revenue increases
of 1.0-1.2% over baseline in each of the cases. AMD and AMR provide an additional 0.6-0.7 pts of
revenue benefit over HF /FA, for a total gain of about 1.8% over baseline when the ancillary service
is optional in all classes. The benefit of AMD and AMR over HF /FA or baseline is relatively stable
over the range of ancillary prices and ancillary utilities tested. Figure 12 lists the airline’s load
factor for each simulation; in general, the optimizer increment slightly increases load factor, while
HF/FA and AMD/AMR decrease load factor compared to the baseline. HF/FA has a slightly
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Figure 11: Percent change in total revenue vs baseline. The horizontal axis lists ancillary prices ($25-$100) and
utility configurations.

greater load factor decrease (around -1.2 pts) than AMD/AMR (around -0.9 pts) vs baseline.

Ancillary purchase rates, average ancillary revenue by passenger, and the portion of total revenue
generated by ancillary services (by class and overall) vary widely across these parameter ranges.
However, the effect of AMD and AMR on booking mix is similar across price ranges, as shown
in Figure 13, but has more variability as relative utilities change (from the leisure-oriented to
equally appealing to business-oriented cases). The leisure-oriented utilities result in a decrease in
bookings in all but the highest fare class. The business-oriented utilities decrease bookings in FC
2, 5 and 6, but increase bookings in FC 3 and 4; the magnitude of the FC 6 decrease (and the total
decrease across all fare classes) is greater with the business-oriented utilities. The business-oriented
utilities have a larger decrease in FC 6 for two reasons. First, with the higher business utility,
more passengers booking in later TFs and more passengers booking in higher value fare classes will
purchase the ancillary service, making it more important to save space for late arriving, high value
customers. Second, with the lower leisure utility, fewer passengers booking in early TFs and fewer
passengers booking in lower value classes will purchase the ancillary, making the value of early FC

6 bookings low, and compounding the booking limit effects of the higher business utility.

5. New Distribution Capability

Industry efforts are underway to reduce, or eliminate, the fare class completeness constraint descri-
bed in Section 2.1. The International Air Transport Association (IATA) is leading the development
of New Distribution Capability (NDC), which is a suite of new distribution technologies and stan-

dards. One relevant aspect of NDC is that it would enable airlines to display and sell more content
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Figure 12: Load factor. The horizontal axis lists ancillary prices ($25-$100) and utility configurations.
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Figure 13: Change in bookings by fare class vs relevant baseline due to AMD/AMR with exclusion gap-filling. The
left chart shows various utility settings and a $50 ancillary price; the right chart shows various ancillary prices when
both consumer segments have a mean ancillary utility equal to price. The $50 equally appealing case corresponds to
the results in the previous portion of this section.
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through more channels, particularly indirect channels. When NDC is implemented by an airline
and its distribution partners, GDSs would no longer be required to aggregate schedules, availability,
and fares to assemble sets of booking options, as described in Figure 1. Instead, GDSs (or other
content aggregators) could request offers directly from airlines.” Most importantly for this work,
these offers will no longer be limited to fare class availability. The airline could respond to each
request with a specifically designed offer or set of offers—each offer would comprise of an itinerary,

a set of zero or more ancillary services, various purchase/use restrictions, and a price.

The shift from a traditional distribution environment to NDC has significant implications for total
revenue optimization. Because NDC increases the ability of airlines to display and sell ancillary
services in indirect channels, airlines expect ancillary revenues to rise with the implementation of
NDC. In addition, because NDC moves away from fare class-centered availability control, airlines
will have to develop offer generation systems. Finally, NDC allows more detailed booking requests
(such as indicating round trip travel, or frequent flyer status), which could enable offer generation
systems to create individualized sets of offers. At the limit, each offer could be personally and

dynamically constructed and priced for each consumer.

We imagine, at least in the near term, a more limited view of NDC that allows airlines to control
the availability of specific fare class and ancillary service combinations in real time, but still relies
on filed fares and filed ancillary prices and does not personalize or individualize offers. In such an
environment, the Ancillary Choice Dynamic Program we have developed in this paper could serve
as the basis for an offer generation system. In such an implementation, the solutions to Equation 3
need not be fare class complete or potentially even nested by fare order. The solution space for the
problem would grow significantly, and the task of determining which offer sets are efficient would be
more complex. However, significant gains in total revenue could also be possible. As one example,
consider a case where demand is very high relative to capacity. With a traditional distribution
system, the airline’s highest expected unit revenue booking policy is to offer only FC 1. However,
with NDC and offer generation, it would be possible to create an even higher unit revenue offer:
FC 1 with a requirement that the passenger purchase any typically optional ancillary services.
While requiring passengers to purchase ancillary services (likely marketed as a bundle, with a total
price equal to the fare plus the ancillary fees) would reduce the probability of a consumer buying
the offer, in very high demand to capacity scenarios (i.e. when the bid price is very high), it is
a revenue-maximizing strategy. Additional development and experimentation is required to assess

the revenue potential of this approach.

7 Airlines and GDSs could still choose to have the GDS assemble offers.
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6. Conclusions and Future Work

In this paper, we have developed a new dynamic programming model for total revenue optimization
that incorporates fares, ancillary revenues, and passenger choices. The model produces an optimal
set of offers, which we define as a fare class and a combination of ancillary services, to be presented
at any given time. Following previous work on choice-based RM, we use the Ancillary Marginal
Demand transformation and Ancillary Marginal Revenue transformation to convert our ancillary
and choice-aware DP into an equivalent independent demand formulation. After addressing practi-
cal distribution constraints, we devised a series of processes to utilize AMD and AMR as total
revenue optimization heuristics in conjunction with existing RM optimizers, and we developed the

Ancillary Marginal Demand forecasting model to provide demand volume estimates.

We then simulated the performance of our heuristics in a single airline, single flight leg environment
with a range of ancillary prices and passenger ancillary utilities. We found that AMD and AMR,
when used with EMSR, can produce revenue gains of approximately 1.8%, where previous choice-
aware methods such as hybrid forecasting and fare adjustment only increased revenue by 1.2%, and
the previous total revenue optimization heuristic (optimizer increment) decreased total revenue.
The gains from AMD and AMR were driven by a reduction of availability in lower-value classes,
increasing space for later-arriving, higher-value customers, and forcing other customers to buy-up

to higher-value fare classes.

Numerous extensions and enhancements to our work are possible. For example, while exact network
formulations for dynamic programs suffer from exploding dimensionality, our heuristics could be
extended to support a network setting. A key challenge will be determining the level of detail and
specificity necessary in the input choice probabilities to maintain reasonable revenue performance;
the extent to which these probabilities could be aggregated and/or scaled across different markets
and fare structures is unknown. In addition, competitive effects in a network setting raise questions
about the degree to which competitor offerings should be explicitly incorporated in the model:
failing to account for competitor offerings could lead to availability decisions that are too aggressive,

while explicitly modeling competitor actions increases data and computation requirements.

Our work has assumed that the airline has knowledge of conditional choice probabilities; in reality,
these would need to be estimated. Further work is required to develop efficient estimation methods,

and to understand how inaccuracies in the input choice probabilities affect revenue performance.

Finally, as addressed in Section 5, the rise of New Distribution Capability could allow airlines to
have significantly more control over the offers they produce. We believe that this work could be
extended to generate offers based on filed fares and prices. A separate, potentially larger challenge,

would be devising dynamic offer generation engines that also incorporate a dynamic pricing aspect.
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