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Abstract

As a new strategic Traffic Management Initiative (TMI) in the FAA’s NextGen portfolio, the
Collaborative Trajectory Options Programs (CTOP) can manage multiple constrained regions in
an integrated way with a single program and allows flight operators to submit a set of desired
reroute options, which provides great efficiency and flexibility.

One of the major research questions in TMI optimization is how to determine the planned
acceptance rates for airports or congested airspace regions to minimize system-wide costs. There
are two types of uncertainties that need to be considered in setting CTOP rates: first, uncertain
airspace capacities, which result from imperfect weather forecast; second, uncertain demand, which
results from flights being geographically redistributed after their reroute options are processed.

In this paper, three families of stochastic models are proposed. The first family of models can
optimally plan ground and air delay for groups of flights if the route choice of each flight is known.
The second family of models control each individual flight and can give the theoretical lower bounds
for the very general reroute, ground-, and air-holding problem. The third family of models directly
control the queue size at each congested region, and can be solved more efficiently compared with
the second family of models. Although these models can provide important benchmarks and can
be used in an airline internal CTOP, they are not compatible with Collaborative Decision Making
(CDM) CTOP software implementation. The simulation-based optimization model, which can use
stochastic models as part of its heuristic, is proposed and can give good suboptimal solution to the
practical CTOP rate planning problem.

This paper gives the first algorithm that optimizes the CTOP rate under demand and capac-
ity uncertainties and is compatible with the CDM CTOP framework, and provides much-needed
decision support capabilities for effective application of CTOP.
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Set of ordered pairs of PCAs. (k, k") € C iff k is connected to k" in the directed graph of PCAs
Ordered set of indices of the airport/PCAs which flight ¢ passes if taking route j
Set of resources, including departure airports and PCAs
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Number of time periods to travel from PCA k to &/, defined for all pairs (k, k") € C
Probability that scenario g occurs

Real capacity of PCA k in time period ¢ under scenario ¢

Time period in which stage s begins

Number of flights with the same path p originally scheduled to depart in stage s and arrive in
PCA k (direct demand) in time period ¢

Number of scenarios corresponding to branch b

Start and end nodes of branch b

First time period in the set 77

Last time period in the set T},

Number of PCAs along route j of flight ¢

Time period in which flight ¢ taking route j is scheduled to cross PCA r
The k-th resource along route j of flight 4

Original scheduled departure time of flight ¢

Cij, Cg, cq Cost for flight 4 taking route j, cost for unit ground delay and air delay

p1, p—1 First and last PCA on path p

Primary Decision Variables
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Planned direct demand at PCA k in time period t from flights with the same path p

Number of flights with the same path p, originally scheduled to depart in stage s arrive in
PCA k (direct demand) in time period ¢, rescheduled to arrive in ¢ under scenario g
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Number of flights with the same path p, flight time [ (to the first PCA k on path p) and
departure time ¢ under scenario g

Whether flight 7 taking route j departs from/passes through airport/PCA r by time ¢

Whether flight ¢ taking route j departs from/passes through airport/PCA r by time ¢ under
scenario ¢

Whether flight ¢ taking route j reaches the first PCA r on route j by time ¢ under scenario ¢

Auxiliary Variables

k,q
Pt7p

Planned direct demand at PCA k in time period ¢ from flights with the same path p under
scenario ¢

D,{f ,  Scheduled direct demand at PCA k (from airports) in time period ¢ from flights with the same
path p

Gf’ ,  Number of flights with the same path p whose arrival time at PCA k is adjusted from time
period ¢t to t + 1 or later using ground delay at their point of origin

Lf’; ’g Number of flights with the same path p that actually cross PCA k in time period ¢ under
scenario ¢

Aﬁ’g Number of flights with the same path p taking air delay before PCA k in time period ¢ under
scenario ¢

UpPCAi’g Number of flights in path p arriving at PCA k in time period ¢ from the upstream PCA in
the same path under scenario g

Dfl , Number of flights with the same path p, flight time [ (to the first PCA k on path p) and with
original scheduled departure time ¢

f’lqp Number of flights with the same path p, flight time [ (to the first PCA k on path p) receiving

ground delay in time period ¢ under scenario ¢

0ij Binary indicator whether flight ¢ will take route j

dqtij  Binary indicator whether flight ¢ will depart in time period ¢ and take route j under scenario ¢

Sqij Binary indicator whether flight ¢ will take route j under scenario ¢

Acronyms and Abbreviations

AFP
ATC

Airspace Flow Program

Air Traffic Control

ATM Air Traffic Management

CDM Collaborative Decision Making

CTOP Collaborative Trajectory Option Program

FAA
FCA
GDP

Federal Aviation Administration
Flow Constrained Area

Ground Delay Program
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PCA Potentially Constrained Area
RBS Ration by Schedule

RTC Relative Trajectory Cost
TMI Traffic Management Initiative

TOS Trajectory Options Set

1 Overview

1.1 Introduction

Air traffic flow management refers to strategic decisions made by air traffic mangers to balance demand
with capacity at airports and airspace regions, which includes modify flight departure time and tra-
jectory. It is strategic in the sense these actions are applied proactively, hours in advance and usually
affect a large region in the National Airspace System (NAS).

Air traffic flow management plays an essential role in ensuring safe and efficient use of national
airspace. In the peak operational times, there are almost 5,400 aircraft flying at the same time in the
national airspace. If there are some adverse weather conditions which cause capacity reductions in en
route airspace and airports, or there are demand surges or accidents like closed runway, we will have
the capacity and demand imbalance. If we cannot resolve these system disruptions properly, serious
flight delays and cancellations will happen, which can have significant economic impacts.

Civil aviation was responsible for 5.1% of US Gross Domestic Product in 2014. Over 1 billion pas-
sengers were carried by airlines operating in US airspace in 2018. The Federal Aviation Administration
(FAA) estimates the cost of delay in 2018 is 28.2 billion dollars [I]. Moreover, in the next two decades,
it is forecasted that each year system traffic will increase by around 2 percent, the number of aircraft
in the U.S. commercial fleet will increase by around 0.9 percent, and commercial FAA operations will
increase by around 1.5 percentage [2]. Therefore, air traffic flow management will only become more
critical.

Traffic Management Initiatives (TMI) are tools air traffic flow managers use to balance demand
with capacity in congested regions. Collaborative Trajectory Options Programs (CTOP) is the latest
tool in the FAA’s NextGen portfolio and the most powerful one. CTOP combines multiple features
from its forerunners including Ground Delay Program (GDP), Airspace Flow Program (AFP) and
reroutes, and has two important new features: first, it can manage multiple constrained regions in
an integrated way with a single program; second, it allows flight operators to submit a set of desired
reroute options (called a Trajectory Options Set or TOS), which provides great flexibility and efficiency.
Since CTOP can be used to managed both airport and en route airspace regions, GDP and AFP can
be seen as special cases of CTOP. Since CTOP can manage more than one congested region, it can
replace the usage of multiple GDPs and AFPs, and avoid coordinating multiple programs [3]. There
are many applications to which CTOP can be applied, but GDP and AFP are not capable to do, for
example, corner post management [4] and Integrated Demand Management [5].

1.2 Research Motivation

CTOP has been deployed by the FAA since March 22, 2014. However, both FAA and airline companies
are a little overwhelmed by CTOP’s flexibility and complexity, and CTOP has been rarely used so far.
In fact, CTOP is in a dilemma: neither FAA nor airlines are adopting CTOP, because the other side
is not adopting CTOP.

On the FAA side, CTOP usage is stalled by the lack of airline participation, since there is no
TOS submission. There is very little historical data available, and air traffic managers do not have
experience implementing CTOP. More importantly, there are very few guidelines and is lack of decision
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support tools for where to create Flow Constrained Areas (FCAs), how to set flow rates, when to do
the revision, etc.

On the airline side, major companies have been hesitating in developing in-house TOS/CTOP
software, because CTOP is not being used by the FAA. Airlines concern about increased workload in
their dispatch department and are in doubt of the return on the investment because there have been
few convincing and successful examples.

From the perspective of the development of air traffic flow management, CTOP is a natural pro-
gression of GDP and AFP. FAA and airline sides CTOP and its related research problems have to
be solved sooner or later and they are inevitable. This paper primarily aims to address one of key
challenges that air traffic managers face: how to set traffic flow rates for multiple FCAs in an optimal
and integrated fashion, so as to help CTOP accelerate adoption at least on the FAA side.

1.3 Research Objectives

The research objectives of this paper include:

1. Understand the characteristics of airspace capacity uncertainty caused by weather forecast and
traffic demand uncertainty induced by reroute options; decide the appropriate decision making
under uncertainty framework

2. Understand the key differences between CTOP and classic TMIs; borrow modeling ideas from
existing TMI flow rate optimization work

3. Problem 1: assume route choice of each flight is known (e.g. the most preferred route), how
to optimize traffic flow rates to minimize system ground and air delay costs? The result itself is
meaningful since it is the solution to multiple congestion regions traffic flow management problem
(no reroute), which itself can be considered as a TMI, too

4. Problem 2: given TOS of each flight, how to optimize reroute, ground and air delay for each
flight in a centralized way? The solution can tell us the theoretical system cost lower bound that
can be potentially achieved, gives the traffic flow picture in the ideal scenario and is particularly
useful for airline to do internal CTOPs

5. Problem 3: how to optimize FCA planned acceptance rates under traffic demand and airspace
capacity uncertainties? This is the core question that we want to answer and the solution can
directly help FAA air traffic managers to improve the implementation of CTOP programs

This paper is organized as follows: in section [2| decision making under uncertainty techniques,
related literature on TMI rate optimization and weather models are reviewed, which help us achieve
the first two research objectives. In section [3] three aggregate stochastic models are proposed to
address the third research objective. These models can be used for both optimization and simulation
purposes. In section [d] six disaggregate stochastic models are formulated to accomplish the fourth
objective, which generalize a notable strong deterministic flight-by-flight level traffic flow formulation
and three of them are based on aggregate models introduced in section[3} In section[f] simulation-based
optimization and stochastic programming methods are combined to tackle the fifth objective and the
core problem: setting traffic flow rate under demand and capacity uncertainties that are compatible
with CDM-CTOP software. In section[6] the contributions are summarized, model extension and other
future work are pointed out.



Ration by Schedule
EWR 12/05/2011 16:12Z ETA Initial GDP and initial allocation of slots to airlines
FAA
based on the planned schedule

@nd Spikes

B E—
l- . - Substitution
o Each airline independently uses the given slots to
Airlines manage the landing of its own flights using flight

Airport Acceptance swapping and cancellation

Rate (AAR] = 32

Compression
FAA Inter-airlines slot exchange, in case the

airline cannot use a given slot

: -
“ ~ o
Time in 60-Minute Increments

Figure 2: GDP in CDM Environment: Information

Figure 1: Demand Spikes Need to be Leveled Off Exchange Improves Efficiency while Ensuring Equality

2 Literature Review

2.1 Air Traffic Flow Management
2.1.1 Ground Delay Program

The first classic Traffic Management Initiative (TMI) is the Ground Delay Program (GDP), which
was introduced in the late 1980s. It is a terminal TMI and directly impacts arrivals into a particular
airport. In a GDP, flights are ground held at their departure airports because the projected demand
is expected to exceed the capacity in their arrival airport for a sustained period. The idea behind the
GDP is that it is cheaper and safer to hold a flight on the ground at its origin airport than to let it
takeoff and subject to air delay and landing difficulties at its destination airport. Air delay is more
expensive because of fuel and other operating costs [6][7][8].

Figure [1| shows the number of scheduled arrival flights to Newark airport (EWR). Different colors
refer to different status of flights, e.g., flights that have already landed, flights that have taken off and
have not landed yet, etc. The white line shows the airport hourly capacity. It can be seen that flight
demand will exceed capacity for several hours. In this case, GDP is necessary and some flights will be
ground delayed.

A key concept in TMI planning is called planned acceptance rates, which are the maximum numbers
of flights that are planned to be admitted to a constrained airport or a FCA in each time period. The
related concept is actual acceptance rates, which are the actual numbers of flights that land at the
airport or traverse the FCA. Planned acceptance rates are control decisions made by the FAA. Actual
acceptance rates are the results of the control decisions.

In a GDP, the FAA will set airport planned acceptance rates, create evenly distributed slots based
on the rates, and assign these slots to GDP affected flights. A fundamental problem is how to assign
slots to flights in a fair way. In the Collaborative Decision Making (CDM) environment (Figure ,
slots are allocated to the air carriers according to their original schedule, which is known as the Ration
By Schedule rule or RBS. According to RBS, flights are prioritized according to their original scheduled
times, even if they are delayed or cancelled. The RBS eliminates the concern of the air carrier of being
penalized if they report their latest information regarding their schedule. After the arrival slots are
allocated to the air carriers, each air carrier can independently reorganize and swap its own flights
into its own slots. This step, known as substitution, allows the air carrier to reduce the delay of its
important flights and take advantage of the empty slots of cancelled flights. The last step in CDM-
GDP is compression. It is used to fill in the landing slots that are cannot used by some air carriers,
which will benefit all air carriers [9][10][11].
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2.1.2 Airspace Flow Program
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The second classic TMI is the Airspace Flow Program (AFP), which was introduced in summer
2006. AFP is an enroute TMI, which is used to manage air traffic in the en route segment of flight.
The initial implementation of strategic air traffic flow management was primarily focused on airports.
However, later it was found that significant flight delays and system degradations are due to en route
airspace problems, particularly from convective weather activity and demand surges. Before AFP
was introduced, to cope with severe convective weather and reduce the en route demand through
constrained airspace, air traffic managers would implement GDPs at multiple major airports to reduce
flows of traffic to these airports (Figure. This approach is very inefficient because it may delay flights
that do not directly contribute to problem and assign no delay to flights that traverse the constrained
airspace [12][13][14].

In AFP, the en route airspace can be directly managed using a concept called Flow Constrained
Area (FCA), which controls the traffic flow into the congested airspace region (Figure 4)).

In both GDP and AFP, there is only one constrained resource is involved and each flight only has
one route option.

2.1.3 Collaborative Trajectory Options Program

The latest TMI is called Collaborative Trajectory Options Program (CTOP), which was deployed
in March, 2014. CTOP combines multiple features from its forerunners, including GDP, AFP and
required reroutes, and can manage multiple FCAs with a single program. The most important concept
in CTOP is Trajectory Options Set or TOS. TOS is a set of desired reroute option submitted by flight
operators. Using TOS, the flight operator can now express their preferences in terms of delay on the
ground versus longer flying time. In the past, if a constraint has been identified, air traffic managers
will either assign a delay (by way of AFP) or specify a reroute. In CTOP, the FAA will set the FCA
planned acceptance rates and let the flight operators to decide which they would prefer: a ground
delay, a reroute or a combination of both.

Table[I|shows an example of a TOS. A TOS consists of a flight’s ID, origin and destination airports,
Initial Gate Time of Departure (IGTD, the departure time when the flight was first created), Earliest
Runway Time of Departure (ERTD, the earliest time the flight can depart) and candidate routes
information.

Relative Trajectory Costs (RTCs) are values submitted by the flight operator to express his/her
preference over route options. There are three optional requirements for each route that can be
provided by flight operator: Required Minimum Notification Time (RMNT) which allows for needed
preparation time, such as adding fuel; Trajectory Valid Start Time (TVST) and Trajectory Valid
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End Time (TVET) which are the earliest and latest acceptable take-off times for that TOS option,

respectively.
Table 1: TOS Example of a Flight from LAX to ATL

Flight ID
ACID |ORIG | DEST IGTD TYPE ERTD
ABC123 LAX ATL 05/1945 LJ60 05/1945

Trajectory Option Set
el N o il
350 435

TRM PKE DRK J6 IRW FSM MEM ERLIN9

m 2045 TRM PKE DRK 134 LBL SGF BNA RMG4 350 435
ﬂ 2045 TRM PKE DRK 134 BUM FAM BNA RMG4 350 430
m 1945 2145 TRMBLH J169 TFD J50 SSO J4 EWM |66 ABI J4 MEI LGC2 350 425
45 1745 2200 TRMBLH |169 TFD ELP J2 JCT J86 IAH J2 LCH |590 GCV LGC2 310 430

FAA allocates the routes to flights on a flight by flight basis according to their earliest Initial Arrival
Times (IATs). A flight’s IAT is the earliest ETA (Estimated Time of Arrival) at any of a CTOP’s FCAs
using any of this flight’s TOS options. We can consider TAT as a flight’s CTOP capture time. This is
the CTOP version of Ration by Schedule (RBS). For a given flight, CTOP allocation algorithm will
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Figure 5: Flight Routes in the TOS and the Adjusted Cost

calculate the adjusted cost for each candidate route and assign the route with the minimum adjusted
cost to this flight. The key equation here is:
Adjusted Cost = RTC + Required Ground Delay (1)

Required ground delay is calculated by the CTOP algorithm given current available slots, which is
the ground hold time this flight will need to bear in order to take a specific route. Assume no route
restriction is violated, as shown in Figure [5] this flight will be allocated with route 2, which has the
smallest adjusted cost among all route options.

The three optional route restrictions may also affect the route assignment. The scheduled departure
time of this flight is 19:45. Assume the current time is 19:10. The RMNT dictates that if route 5 if
chosen, then this flight cannot depart until 19:10 + 45 mins = 19:55. In this case the required ground
delay is actually 10 minutes and the adjusted cost is 80 minutes. It can be seen that apart from
available slots, the route restrictions can be another source for required ground delay. For route 3, the
flight needs to take 60 minutes ground delay in order to meet the TVST requirement: 19:45 4 60 mins
= 20:45. Therefore if the route restriction is considered, the adjusted cost for route 3 is 110 minutes.
Route 2 still has the smallest the adjusted cost and satisfies TVET: 19:45 + 20 mins = 20:05 < 20:45.
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For a more detailed introduction to CTOP algorithm, the readers are referred to [15] or [16].

Since CTOP can be used to manage both terminal and en route airspace regions, therefore GDP
and AFP can be seen as special cases of CTOP. Since CTOP comprises multiple FCAs and each flight
has a TOS, CTOP traffic flow rates planning is multiple constrained regions multiple reroutes planning
problem.

2.1.3.1 TOS-induced Demand Uncertainly

In previous sections we have introduced that in CTOP, FAA will set acceptance rates for each FCA,
then run TOS allocation algorithm to assign slots to CTOP captured flights. Therefore only after
finishing these two steps, air traffic managers can know which route each flight will take. Demand
uncertainty refers to the problem that when setting FCA flow rates, air traffic managers do not know
which route in a flight’s TOS will be assigned to this flight, thus traffic demand for each constrained
region is uncertain. This new source of uncertainty is brought by the introduction of TOS, thus it is
called TOS-induced demand uncertainty or demand variability.

2.1.4 Weather Translation Models

Airport and airspace capacity is the key parameter in air traffic flow management models. To prepare
this parameter for deterministic optimization models, weather translation model is used by the FAA
to compute capacity reduction factor or quantile. The capacity of adverse weather impacted region is
then the nominal capacity times reduction factor.

Translating ensemble weather forecasts to probabilistic capacity information is an important line of
research in the aviation weather community [17, 18, 19]. There are two representative works that study
how to generate scenario tree from weather data. In [20], historical weather data is used and two steps
approach is employed: clustering method is first used to develop scenarios, then a heuristic method is
used to assemble scenarios into a tree by finding the branching points. In [21], hierarchical clustering
approach is used to generate capacity scenarios from weather forecasts. The result is a scenario bush.

2.2 Decision Making Under Uncertainty Approaches

CTOP rates planning is a decision making under uncertainty problem. Here we review several frame-
works related to decision making under uncertainty problems.

2.2.1 Deterministic Mixed Integer Linear Programming Model (MILP)

In deterministic model, we assume all model parameters are perfectly known. Deterministic model is
the basis for decision making uncertainty models.

There are two paradigms of deterministic air traffic flow management models: Lagrangian models,
which work at a flight-specific level and provide trajectories and departure times for each flight, and
Eulerian models, which work at the aggregate flow-based level and provide counts of aircraft in airspace
regions. The main advantage of Lagrangian models is their flexibility and ability to cope with flight-
specific differences. Though these models tend to be NP-hard, it has been shown that by carefully
picking decision variables, a strong formulation can possibly be obtained and realistic-size problem
instances can be solved [22] 23| 24]. The advantages of Eulerian models are that they depend only on
the size of the geographic regions of interest rather than on the number of aircraft in the regions, and
they have structure which facilitates the use of classic control theories [25] 26| 27, 28], 29].

2.2.2 Stochastic Programming

As mentioned in [30], one of the first applications of stochastic programming was done by George

Dantzig to allocation aircraft to routes as early as 1956. That problem belongs to airline operation.
Two pioneering works on applying two-stage and multistage stochastic programming to GDP prob-

lem were done by Richetta et al. in the early 1990s [31] [32]. The first stochastic model that conforms
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to the current CDM operating procedure, proposed by Ball et al. [33], is a two-stage highly aggregate
model that directly computes planned acceptance rates for a weather-impacted airport. It was later
proved that under mild conditions, the model in [3I] can also generate CDM-compatible solutions [34].
In the aforementioned models, once a ground-delay decision is made, it cannot be revised, even if the
flight is still on the ground and further ground-holding is possible. Mukherjee formulated a disaggre-
gate multistage model that allows a flight to take ground delays multiple times based on the latest
capacity information and the scenario tree structure [35]. Importantly, his model gives the theoretical
lower bound on system cost for the scenario-based GDP planning problem. In this paper, we will
generalize these models in several ways to solve CTOP related planning problems.

2.2.3 Robust Optimization

In robust optimization, we assume uncertainty parameters are contained in an uncertainty set. A
robust feasible solution needs to satisfy all realizations of the constraints from the uncertainty set [36].
There are two papers that apply robust optimization to solve air traffic flow management problems
[37, [38]. Both works deal with capacity uncertainty and use a specific weather assumption. To address
the over-conservative issue, two-stage and multistage robust optimization models are formulated [39)].

2.2.4 Chance Constrained Programming

In chance-constrained optimization, we optimize objective function while controlling the probability
that a constraint is violated. There are three representative works of using chance constrained pro-
gramming to solve air traffic flow management problems. In [40], the authors formulated an integer
programming problem, which can quickly become intractable as the problem size increases. In [4]]
used historical weather data, adopted log-concave weather distribution assumption, applied branch
and bound and first order method to solve integer convex optimization problem. In [42], the authors
applied quantile estimate to get airport capacity, which approximately has the same effect as chance
constraint.

2.2.5 Markov Decision Process

Researchers have explored using Markov Decision Process (MDP) in GDP flow rates planning [43], [44],
45]. The first problem with these MDP models is that it takes a long time to solve, even with approx-
imate dynamic programming techinques. The bigger problem with applying MDP approach to CTOP
is that, like in robust optimization and chance constrained programming, the weather assumption is a
little too restrictive.

2.2.6 Machine Learning (Data-driven) Approach

Machine learning techniques can be applied to find similar days in the NAS, and past decisions are
used as references for human decision makers [46], 47, 48], [49]. This could reduce the inconstancy of the
decisions. This is not applicable for CTOP, because we do not have historical data for CTOP.

2.2.7 Simulation-based Optimization

Simulation-based approach has also been used to in air traffic low management, for example, in de-
termining the GDP parameters under uncertainly [50] and in strategically selecting TMI combinations
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3 Aggregate Stochastic Models

3.1 Introduction

In the section, we start off simple and address problem 1 listed in section Problem 1 can be seen
as a subproblem of problem 3, since demand uncertainty issue does not need to be considered. This
is a FAA side research problem, therefore we care about minimizing system-wide ground and air delay
costs. The goal is to optimize CTOP traffic flow rates, which means we want to optimally control the
number of flights to be accepted to each constrained region in each time period. Because there are
now multiple congested airspace regions, the traffic flows need to be managed in an integrated way.

In this section, we first introduce several important concepts that will be used through out this
work. We emphasize that CTOP planning problem is essentially a multi-commodity flow problem.
Next, we list the model assumptions, discuss in detail the three aggregate stochastic models and some
additional modeling considerations. After that, we will talk about the experiment setup and discuss
the numerical results. In the end, we summarize the findings.

3.2 Preliminary Concepts
3.2.1 Potentially Constrained Area (PCA) and Capacity Scenarios

In this work, a constrained airspace resource is modeled as a Potentially Constrained Area (PCA),
in which air traffic demand may exceed capacity and whose future capacity realization is represented
by a finite set of scenarios arranged in a scenario tree. A related concept is the PCA network, which
refers to a directed graph that links the PCAs and models the potential movement of traffic between
them. Figure [f] shows the scenario tree used in this work. Scenarios 1 to 3 correspond to optimistic,
average and pessimistic weather forecasts, respectively. Figure [7] shows an example of PCA network
that is composed of three en route PCAs and one constrained airport EWR. In multi-resource air traffic
management problem, the change of operating condition at any PCA will result in a branch point in
the scenario tree. Therefore, scenario tree in Figure [6] models the evolution of the future capacities of
all four PCAs in Figure[7]
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Figure 6: Scenario Tree of PCAs’ Evolving Capacities

3.2.2 Path, Direct Demand and Upstream Demand

One key characteristic of general multi-resource air traffic management is that the problem is in nature
a multi-commodity problem, since flights will traverse different congested airspace and reach different
destinations. One the other hand, even though there may be several constrained resources involved,
single airport ground hold and reroute model is essentially a single commodity problem, since all air
traffic is bound for the same destination [52].
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Figure 7: Geographical Display of a PCA Network

In a PCA network, flights are grouped by “path", which is the sequence of PCAs that flights
traverse. A path uniquely determines a commodity in the multi-commodity flow model. For example,
in Figure [7], PCA1 — PCA EWR is one path and PCA1 — PCA Exit is another path. Flights in
these two paths share the capacity resource of PCAL.

We differentiate direct demand, which are the flights flying from departing airports, with upstream
demand, which are the flights flying from the upstream en route PCA. We can ground hold direct
demand before flights taking off, and we can air hold both direct demand and upstream demand. Since
flights are grouped by path, a flight will enter the PCA network through the first PCA (denoted as
p1) on its path p and exit through the last PCA (denoted as p_;) on its path. For example, for path
PCA1 - PCA EWR, p; = PCAL1, p_; = EWR.

3.3 Model Assumptions

Several assumptions are made in this work. Firstly, the TOS route information, the topology of the
PCA network, unimpeded PCA entry times, CTOP start and end times, and scenario-based PCA
capacity information are given as model inputs. In this section, each flight is assumed to take the
shortest route in its TOS set. Secondly, all flights are required to exit the PCA network by the end of
the planning horizon. This boundary condition ensures that results from different models can be fairly
compared. Thirdly, the planning horizon is equally divided into 15-minute time periods.

3.4 Two-stage Static Model

Two-stage aggregate stochastic model is introduced in this section. In this model, the first stage
decisions are the ground delays assigned to the flights. The second stage decisions are the air delays
the flights need to take in response to the realization of the weather scenarios. This model is an
explicit multi-commodity flow model, since every decision variable has subscript p, which represents
path (commodity).

Direct demand can be ground delayed. At the first PCA on each path, we have the following
relationship for planned acceptance rates, originally scheduled arrival demand and ground delays:

Pl,=Df,— (G}, -G}, WeT,peP k=p (2)

If k is the first PCA on that path, the actual demand at PCA k on path p in time period t will be
Pt’fp. Otherwise, the actual demand will be the number of flights from upstream PCA which is scenario
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dependent UpPCA} ) 4 For each case we have:

. _ k,q k,q
Lha— ifk=p F, (A A;glp) i VteT,qe Qpe P.kcp  (3)

' else UpPCAt,p (Atf At’_qu)

UpPCA}Y = Lf:‘ik,’km VteT,qe Q, (K. k) ep (4)
Constraint enforces the number of flights which actually cross PCA k equals to the actual demand
minus the incremental number of flights taking air delay. Constraint stipulates that, when cal-
culating the traffic demand at k from the upstream PCA k', the average travel time between (k, k')
needs to be considered. In the PCA1 — PCA EWR path example, the first case in corresponds
to PCA1 and the second case corresponds to PCA_ EWR.

Remarks: constraints (2|) and (3] characterize the most important tradeoff in the model: if scheduled
traffic flow rates are smaller than the demand, then some flights will need to take ground delay; if
scheduled traffic flow rates are greater than the actual capacities of the constrained regions, flights will
have to take more expensive air delay.

Different groups of traffic flows are coupled through the capacity constraints at their shared PCAs:

MLyt <M, WeT,qeQkeP (5)
pEZS

All the decision variables are required to be nonnegative integers:

G Ly AV €Ty VteT,qeQpe P kep (6)

tp? t,p’ tp7

Boundary conditions are needed in air traffic management models to guarantee all flights are properly
handled, so that we can fairly compare the performance of different models. It is worth noting that
the following boundary condition, which is used in GDP models [33], cannot ensure all flights will land
at the end of the planning horizon in the multiple constrained resources case:

Gop=Afr,=0 YpePkep (7)

The reason is that in multiple resources case, it takes time to travel from one resource to a downstream
resource. Even though there is no ground or air held flight, there can still be flights in the PCA network
because of L tps - 1 we want all the flights to land /exit the PCA network by the last time period,
we will need to explicitly enforce, for each path and for each scenario, the total scheduled demand of
flights belonging to path p equals to the cumulative number of flights which exits the PCA system via
the last PCA on path p:

ZDk PL— ZLk P Yge Qpe P (8)
teT teT

There are several performance metrics for evaluating a TMI. The three most important metrics
are efficiency, equity and capacity utilization [53, [54]. In this model, like most other air traffic flow
management models in the literature, the objective function minimizes the ground delay and (expected)

air delay cost:
D DD DCTIRTS D 9D 9 F o

teT peP qeQ  teT peP kep

3.5 Multistage Semi-Dynamic Model

A drawback of the static model is that we do not take advantage of the updated weather information
or the structure of a scenario tree. In this section, the multistage semi-dynamic stochastic model is
introduced, which could partially overcome this limitation. In this model, for each flight the ground
delay decision is no longer made at the beginning of the planning horizon, instead it is made at
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some pre-determined time before scheduled departure time, e.g., at the beginning of a flight’ original
scheduled departure stage. The model is named semi-dynamic because compared with the model which
will be introduced in the next section, the ground delay, once assigned, cannot be revised and thus the
model is not fully dynamic.

In this model, the concept of stage is used. A stage can comprise several time periods, in which we
have the same weather information. For example, in Figure [6] there are three stages, and the dotted
vertical lines indicate the starting times of each stage. Like in the previous sectlon, we will plan ground
delay for the scheduled direct demand. A new primary decision variable x" st t' is used, which records
not only the originally scheduled arrival time, but also originally scheduled departure stage. For the
first PCA on each path, we have the following conservation of flow constraints:

T
ZXstt’,p_Sf,t,p Vse S, t>ts,qe Q,pe P k=pm (10)

t'=t

For variable X"%,  we must have t/ > ¢ > ts. Variable X M4 contains the ground delay information.

s,t,t',p? s,tt'.p
From X ’tqt, , We can calculate the actual direct demand at the first PCA k on path p in each time
period, which is now scenario dependent:
ZZXSWP VteT,q€ Q,p€ P k=p (11)
seS t>t!
>ty
The other constraints are similar to the static model:
if k = AP — A
I S Py = k,va’)k VteT,qeQpe P kep (12
’ else UpPCAt,p (At,}? — At’_qu)
UpPCAJ = L Ny VteT,qe Q,(k,k)ep  (13)
Lyt < M, VieT,qe QkeP  (14)
pEP
X5, €y VseS,t>tsqe Qpe P k=p  (15)
PR LY AV € Ty VteT,qe Q,pe P kcp  (16)
AFT=0 Vge Q,pe P kep  (17)
DD Sy =L vgeQpe?  (18)
SES t>ts teT

For multistage model, we have the set of nonanticipativity constraints, which ensure that decisions
made in time period ¢ are solely based on the information available at that time .

k,qb k8
s, ==Xt Vpe P k=pLseSt>t,t' >tbeBt €D (19)

This set of constraints mean that if a set of scenarios are on the same branch, we should take exactly
the same actions with respect to this set of scenarios. The branch(es) information is determined by
s, the original scheduled departure time. For example, if we are at time period t; 4+ 1 (stage 2), we
should impose:

k.2 _ k3 —
Xohivrwp =Xt p10, VPEF k= prtt =t +1 (20)

The objective function minimizes the expected ground delay and air delay cost:

IT]
Dopa(3 D0 D ol — X, + 30N D cadiy) (21)
qeQ seS flz:tﬁ pEP teT pe? kep
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Remarks: since semi-dynamic model is more flexible than static model, one would suspect static model
is a special case of semi-dynamic model. In fact, if we impose the nonanticipativity constraints at the
root of the scenario tree, semi-dynamic model will produce exactly the same result as the static model:

k1 k2 k|Q
Xt = Xsjwrp == Xs,tl,t",p Vpe P k=p1,s €Sttt >t (22)

3.6 Multistage Dynamic Model

In this section, the fully dynamic model is introduced. The key idea of this model is that when making
ground delay decisions, we will consider the possibility this flight may be further ground delayed later
n (“plan to replan").

One major difference between this model with the previous two models is that we will group
flights not only by path but also by en route time. This is because in a fully dynamic model, the
nonanticipativity constraints will be enforced at a flight’s actual departure time. We need to know, if
we let these flights take off now, how long it will take for these flights get into the PCA network and
become real demands to the PCAs.

Different from two-stage static model, where we have conservation of flow constraints at the first
PCA on each path, here conservation of flow constraints are imposed at departure airports for all
groups of flights:

k k, k,
Pt,l?p = D”p (thp — thl,l,p) VteT,leL,pe P (23)

Ptkiqp now is the planned release rate, rather than the planned acceptance rate. Df Ip is the scheduled

departure demand, instead of the scheduled arrival demand as in two-stage static model. The direct
demand for PCA k in time period t from flights with the same path p under scenario ¢ is:

k,
Z Pt (i,l,p (24)

lel

The other constraints are similar to static and semi-dynamic models:

b k? k7
if k= p; ZPt 3170 (A Atfqup)

Lf’,? leL VteT,qeQ,pe P kep (25)
else UpPCAYY — (AP? — A7 )

UpPCAyY = L e, VieT,qc Q (K. k)ep  (26)
> Lij < Mf, VeT,qeQkeP  (27)
peEZS

PhL G LY AV € T VteT,leLlgeQpe P kep  (28)
Goil, = Ao =10 VieLqgeQpePkep  (29)
PIPILTVAED B i Vae Qpe?  (30)
teT lel teT

As has been emphasized, the nonanticipativity constraints are imposed at flights’ actual departure
time, which will determine the branch(es) information at that time:

b
Pt'fl’f’; =. —PHPN" VteT,leLl,pe P k=p,beB,tcbd (31)

Objective function minimizes the expected ground delay and air delay cost:

PRICOIDID METEETD DI I (32)

qeQ teT leL peP teT pe? kep
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Figure 8: Weather Forecast for 2210z, Taken at 1522z on July 15, 2016

Remarks: similar to , we can impose the following constraint to make static model a special case
of dynamic model:

ko 51O
S P, =D P, = =2 P, e T pe 2 k=p (33)
lel lel lel

Denote Pt/fcp’q as the solution of semi-dynamic model. By imposing the following constraints we can
also recover semi-dynamic solution from dynamic model solution

phe=N"PM,  VteT,pe P k=p (34)
lel

3.7 Experimental Results

To demonstrate the performance of the proposed models, we created an operational use case based
on actual events on July 15, 2016. This use case primarily addresses convective weather activity in
southern Washington Center (ZDC) and EWR airport. Figure (8] shows the pattern of convective
weather activity for that day. There is a four-hour capacity reduction in ZDC/EWR from 2000z to
2359z. By analyzing the weather and traffic trajectory (Figure E[) data, we can build the PCA network,
shown in Figure [7]

3.7.1 Capacity Profiles and Traffic Demand

For simplicity, in this work we directly manipulated the capacity profiles from the base forecast to create
the alternate capacity profiles, which gives us full control over the capacity profiles for experimental
purposes. In practice, weather translation techniques introduced in section[2.1.4]can be used to generate
probabilistic weather scenario.

A relatively simple scenario tree is used, shown in Figure [6] Three scenarios correspond to the
optimistic, average and pessimistic weather forecasts, respectively. This scenario tree has more than
one branching point and it is expected that multistage models will take advantage of the structure
information and outperform the static model. The detailed capacity information is listed in Table [2|
We can see that in scenario 1 at 2100Z PCA1’s 15-minute capacity changes from 44 to 50, the EWR’s
capacity changes from 8 to 10; in scenario 2 at 22307, the capacities of PCA1 and EWR return to the
nominal values. These two changes correspond to the two branch points in the scenario tree shown in

Figure [6]
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Figure 9: Traffic Routing Around the Original (Yellow) PCA

Table 2: Capacity Scenarios

Resource/Time Bin  20:00 15 30 45 21:00 15 30 45 22:00 15 30 45 23:00 15 30 45 00:00 15 30 45 01:.00 15 30 45

PCAO 13 13 13 13 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
Seenl PCA1 44 44 44 4 50 50 50 50 50 50 50 50 50 50 50 50 0 50 0 50 50 50 50 0 50 50 50
PCA2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8§ 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
PCAO 13 13 13 13 13 13 13 13 13 13 25 25 25 25 25 25 25 25 25 25 25 25 25 25
Seen? PCA1 44 44 4 44 4 44 44 44 4 44 50 50 50 50 50 50 0 50 50 50 50 50 50 50 50
PCA2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8 8 8 8 8§ 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10
PCAO 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 25 25 25 25 25 25 25 25
Scen3 PCA1 44 44 44 4 44 44 44 44 44 44 44 44 44 44 44 44 B0 50 50 50 50 50 50 50
PCA2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8 8 8 8 8§ 8 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10

Note in GDP optimization, we usually add one extra time period to make sure all flights will land
at the end of the planning horizon. Because CTOP has multiple constrained resources, depending on
the topology of the PCA network, we need to add more than one time period. In this case, we add
eight extra time periods, because the longest travel time between the three en route PCAs and EWR
among all TOS options is around 2 hours (8 time periods). For any time periods outside the CTOP
start-end time window, e.g. the eight extra time periods in Table [2| nominal capacities are used.

Flight trajectory data from the FAA’s System Wide Information Management (SWIM) and Coded
Departure Route (CDR) databases are used for traffic demand modeling. In total 1098 flights are
captured by this CTOP, among them 890 flights that traverse the PCAs in their active periods. Figure
to Figure [13] show the demand information at the four PCAs if no flight takes any delay.

It can be seen that from Figure [7] that there are in total 7 possible paths: direct demand to EWR,
passing one of the three en route PCAs then landing at EWR or passing one of the en route PCAs
then exiting the system. We require all the CTOP captured flights to land at EWR /exit the PCA
network at the end of the planning horizon.

3.7.2 Model Comparisons

All optimization models are solved using Gurobi 8.1 on a laptop with 3.6 GHz processors and 32 GB
RAM. The main results are listed in Table [3] There are some key observations from this table:
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Figure 12: Demand and Capacity at PCA1 Figure 13: Demand and Capacity at PCA2

e The two-stage solution outperforms the deterministic policy (Scenl-3 and EEV), as it should,

since it explicitly considers the uncertainty when making holding decisions. EEV is the expected
result of using the EV solution.

e The semi-dynamic model solution is better than the two-stage model solution and dynamic model
in turn performs better than semi-dynamic model, which are also expected, because dynamic
models uses more weather evolution information than two-stage static model.

e The computation times for all deterministic and stochastic models are all very short. Actually
in all cases, integer solution can be obtained from solving the LP relaxation of the problem.

3.8 Formulation Properties

One advantage of aggregate model is that the number of decision variables and constraints do not
directly dependent on the number of affected flights. In this use case, the size of static model is

relatively small. As model becomes more flexible, the number of variables and constraints increase to
the order of tens of thousands.

3.8.1 Totally Unimodularity Properties

Static aggregate multi-commodity CTOP model is the direct generalization of static GDP planning
model [33], and the latter has been proved to be Totally Unimodularity (TU) [55][56]. Numerical
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Table 3: Aggregate Model Deterministic vs. Stochastic Solutions Comparison

Ground Delay Periods Air Holding Periods Total Cost
If This Scenario Occurs: If This Scenario Occurs:  If This Scenario Occurs:  Expected Cost Running Time
Scenl Scen2  Scen3  Scenl Scen2 Scen3  Scenl Scen2  Scen3 Seconds
Scenl 93 93 93 0 194 391 93 481 875 482.8 (LP Rlx) < 1.0
Scen2 284 284 284 0 0 200 284 284 684 404.0 (LP Rlx) < 1.0
Scen3 484 484 484 0 0 0 484 484 484 484.0 (LP Rlx) < 1.0
EV 166.0 (LP Rlx) < 1.0
EEV 166 166 166 0 121 318 166 408 802 453.6 (LP Rlx) < 1.0
Two-Stage Model 284 284 284 0 0 200 284 284 684 404.0 (LP Rlx) 0.17
Semi-Dynamic Model 165 284 415 0 0 69 165 284 484 329.0 (LP Rlx) 0.67
Dynamic Model 126 284 479 0 0 9 126 284 488 300.5 (LP Rlx) 1.19
Perfect Information 93 284 484 0 0 0 93 284 484 286.7

Table 4: Complexity of Aggregate Models

Variables Constraints Non-zeros

Static 1,813 1,924 5,293
Semi-dynamic 14,889 9,141 42,456
Dynamic 22,752 16,274 49,405

results of this use case have shown that LP relaxation solution of static aggregate CTOP model is also
integral. In this section, it will be shown that even in deterministic case, aggregate CTOP model is
not TU. This is not surprising since it is well known that in general multi-commodity flow is not TU
[57].

In the following small example (Figure , there are three congested resources, one en route region
and two terminal airports. The travel time from the en route region to both airports are equal to one
time unit, the planning horizon is 3 time periods, and the capacity information is known perfectly.
The coefficient matrix is listed in Table [51 We find a submatrix (35)) whose determinant is 2. Thus, in
general aggregate CTOP model is NOT TU.

PCA 2 48D
4

-}
ot — |

PCA3

Figure 14: Counterexample of TU Property of Aggregate Model

-1 0 0 0 -1 0 0 0 0]

1 0 00 0 -1 0 0 0

0O -1 0 0 0 0 -1 0 0

0O 1 -10 0 0 0 0 0
det(|]O 0 1 0 0 0 0 -1 0])=2 (35)

o 0 0 1 0 0 0 0 -1

o 0 0 0 1 0 0 0 1

0O 0 0 1 0 0 1 0 0

o0 0 00 0 1 0 1 0]
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Table 5: Coefficient Matrix of the Counterexample for Aggregate Model
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3.9 Conclusions

In this section, three stochastic models are proposed to addressed problem 1 (section , which
generalize the classical GDP planning models to the case of multiple constrained regions. We have
showed the benefit of allowing flights to dynamically adjust departure times by exploiting weather,
departure and en route time information. In particular, fully dynamic model can achieve 25.6% lower
expected cost compared with the static model and the best deterministic model.

4 Disaggregate Stochastic Models with Reroute Options

4.1 Introduction

In the section, we address the problem 2 listed in section Compared with the last section, here
we have the additional freedom to reroute flight. Since the composition of route choices (TOS) can be
different for each flight, decision variables have to be at flight-by-flight level when it comes to ground
delay and reroute decisions. Two classes of models can be formulated, Lagrangian model (disaggregate
model) as described in section and Lagrangian-Eulerian model (disaggregate-aggregate model).
The idea of Lagrangian-Eulerian model is that after flights choose their route and take the ground
delay, when they reach PCA network, they will be grouped into and managed as traffic flows, as shown
in Figure There are two motivations for proposing such models:

1. In Lagrangian-Eulerian model, the number of air-holding flights or queue size at each PCA, is a
decision variable and can be directly controlled. Managing the size of a queue can be important
because it is related to the workload of ATC controllers. It is not easy to impose such constraint
in Lagrangian model.

2. There are in general fewer decision variables and constraints in Lagrangian-Eulerian model. This
will potentially lead to less computation time.
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Figure 15: Illustration of Lagrangian-Eulerian Model

It will be shown that Lagrangian part of model is a generalization of Bertsimas and Patterson model
[22], the Eulerian part of model is based on the aggregate model proposed in the previous section.

In this section, we will first describe the formulations of two classes of models. For each class,
similarly to the last section, there are two-stage static, multistage semi-dynamic and dynamic models.
Hence in total there will be 6 stochastic models. Next, we will show how to limit the maximum
ground and air delay a flight can take, and how short-term weather forecast and required minimum
notification time will affect the nonanticipativity constraints. In section [£.6]and [£.7] we will investigate
model formulation properties and numerical results. In section [£.8 we will briefly recapitulate and
compare the aggregate and disaggregate models introduced so far. In the end, we will summarize the
contributions of this section.

4.2 Two-stage Static Models

In this section, we introduce the Lagrangian and Lagrangian-Eulerian versions of two-stage stochastic
model. In two-stage models, the first stage decisions are the reroute decision and ground delay assign-
ment, and the second stage decisions are the air delays flights need to take in response to the actual
weather scenarios.

The primary decision variable in this work is w;qt, which is a binary variable indicating whether
flight ¢ will take j and departs from/passes through airport/PCA r by time t. To be more clear, when
r is an airport (r = Q%), and if route j is chosen for flight 4, w;qt = 0 implies that flight is still on the
ground. The first time period w:ft = 1 is when this flight is released for departure. When r represents
a PCA and j is chosen, w:th = 0 means flight ¢ is still on its way to PCA r, and w:]qt first becomes 1
when it is admitted to PCA r. In two-stage stochastic model, the first stage decisions are made while
a flight is still on the ground and are the same for all scenarios, hence we can drop superscript ¢ in

T

Wiy, When v ij

4.2.1 Lagrangian Version

In the first set of constraints we ensure that one and only route is chosen for each flight:
— 5. ; ; ppe— 1V
w:]T;rJ _5'5] V’LG?,] 69\2,7’—9”

Z 52‘]' =1 Vie F (36)

JEZ
If j is indeed selected for flight ¢, then this flight must depart by the last allowed departure time period
T:j. Here ;5 is only an ancillary variable.

There are two types of connectivity constraints in this problem: connectivity in time and connec-
tivity between resources. Connectivity between time ensures that if a flight has been admitted to a
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resource by time ¢, then w?. ,, has to be 1 for all later time periods ¢’ > t.

ig,t’
wip1 20 VieF,je Z,rEQ%,tET],qEQ

: k>1
wih —wi >0 Vi€ F,je FreQitelqeq

,
Wit —

(37)

Connectivity constraint between resources imposes that if a flight passes through resource r’ by t+A"™""
it must have been admitted to r, which is the upstream resource on route j, by t.

T‘/,q > 0 — 1

Wi ar wi;, <0 VieF,je F,r=1Q;, r =, te T} 38)
.q 7,q . o / k>1 r

Wiy Ar —w;iy <0 Vie . F, € Frr GQM t €T

The capacity constraint stipulates that the number of flights admitted to PCA r should not exceed its
actual capacity in time period t.

S Wi -wh ) <M, VreQFteT,qeQ (39)

5t ij,t—
(1,§) EDR;LETY;

The boundary conditions are:

wijrr 1 =0 Vie F,j e Fir=0 (40)
Wity 1 =0 Vie F,jeF,re qeq (41)
w;qTr = 0;j Vie F. jeFr= Qg“,q €Q (42)

Ground delay for flight ¢ is:

= Z { Z t(wij, —wij 1) — 5ijDepz} (43)

— —
J€Fi teT]r=0);

Air delay for flight ¢ under scenario q is:

aig= Y [ > (t(wfﬁ —wijy 1) ~ 5ijt;j)} — 9iq (44)

—
I€F yeTrir= Q

In this work, we assume ﬂlght Cannot depart before scheduled departure time and cannot speed up,

therefore Dep; = Tw RS I &

The objective function mlnlmlzes the total reroute, ground delay, and expected air delay costs.
Arranging the terms in the following formula

min Z (ngi + Z CqQig + Z Cijdij)
1EF q€Q JEF;

we obtain

min Z Z {cij&-j + (cg — ¢q) Z (t(wijt — wzj,t—l) — 6¢jﬂj)+

€T JETF; teT;aT QO
y (45)
E ) r
Ca (t(wz],t wz] t— 1) 6Z]tl]):|
teT s r= Q

'L‘]7
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4.2.2 Lagrangian-Eulerian Version

If we assume the travel time between two consecutive PCAs is the same for all flights, which is a rather
mild condition and a common assumption in Eulerian models, we can cluster flights by paths and get
a more aggregate Lagrangian-Eulerian formulation.

The Lagrangian-Eulerian formulation is listed below. As mentioned section [4.1} once a flight has
chosen a route, left the airport and arrives at the first PCA on the picked route, it will be grouped
into traffic flows along that path. That is exactly what constraints describes. The key word here
is arrive at, which is different from pass through.

SN et leg—ca) D0 (Hehy— k) =0T ) | Feadoped ) D AL

€7 jeF teTT =07, q€Q  teT peP kep
(46)
Wiy = 0 Vie F,jeFr=  (47)
Z 51'1' =1 Vie F (48)
JEZF;
th_ :]t 120 ViEﬂ,jEﬂi,T—Q?J,tETﬁqu (49)
w;f—w;f >0 Vie Z,jeFir' =0 teT,qeQ  (50)
w:}?ﬂj—l = u?;’z;] =0 Vie F,je F,r Q?J, r = Qzlj,q €Q (51)
j’j’f%m, —wj;; =0 Vie F.jeFr=0r = teT); (52)
Pt]fp = Z Z (Wi — Wi 1) VteT,peP,k=p (53)
(1.5)EPwsjEPLET];;r =L,
if k= Ab Ak
Lyy = R s S VteT,qeQ,pePkep (54)
else UpPCAF o — (Af "y — AF Lpg)
k
UpPCAf,, = L™, teT,qeQ,(K,k)ep (55)
Zpk PL __ ZLk P—1,9 VPEP,QEQ (56)
teT teT
Pf, L Af, >0 VteT,qeQ.peP.kep (57)
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4.3 Multistage Dynamic Models

In this section, we introduce the multistage stochastic models which can dynamically adjust flight
release time and reroute choice before actual departure.

4.3.1 Lagrangian Version

The formulation is listed as follows:

N .
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The first three sets of constraints make sure one and only route will be chosen for each flight.
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is an ancillary binary variable indicating whether flight will take route j and depart in time period t¢.
Sqij is another ancillary variable which shows whether flight will choose route j under scenario q.
and are connectivity in time constraint and connectivity between resources constraint. is the
capacity constraint, which has exactly the same expression as in the two-stage model. In multistage
model, we will also have a set of nonanticipativity constraints , which ensures that decisions are
made solely based on the information available at that time. @ and are boundary conditions.

4.3.2 Lagrangian-Eulerian Version

The dynamic Lagrangian-Eulerian model is straightforward. The “Lagrangian part" is similar to several
constraints in dynamic Lagrangian model, and the “Eulerian part" is the exactly same as in the static

Lagrangian-Eulerian except for the additional superscript ¢ in Pt]f;)q and @]
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4.4 Multistage Semi-dynamic Models

In multistage dynamic models, a flight can revise the departure time and reroute choice multiple times
as long as it is on the ground. An important and practical variant of multistage model is semi-dynamic
model, in which the ground delay and reroute decisions are made at some pre-determined time, e.g.
1 hour before schedule departure time. For simplicity, we usually assume the decisions are made at
the scheduled departure time. Instead of enforcing 7 we will impose the following nonanticipativity
constraints in Lagrangian and Lagrangian-Eulerian models:

‘ , .
6q?tij =...= 5Q§’vbtij Vie F,j€Fte T;;”.b € B,y > Dep; > oy (80)

The major advantage of semi-dynamic model over dynamic model is the higher predictability in flight
schedule.

4.5 Additional Modeling Considerations
4.5.1 Limiting the Amount of Delay

—r=00.
The parameter T' directly controls the maximum delay flight 7 is allowed to take. By setting T; Y as
a small number, we can limit the amount of allowed ground delay. When two PCAs are very close to
each other, it is not realistic for a flight to take even one unit of air delay. In that case, for such (r,r’)

on route j we can impose that

r'q rq T
Wiiprare — Wi =0 t €Ty (81)
In general, if the maximum air delay between (r,7’) on route j is dzj’»rl, we can add the following set of
constraints: /
w1 —wi, >0 teT] (82)

ij,t—&-ATvT'—i-dzf/
which enforces that if a flight has traverses resource r by ¢, it will reach 7/, which is the downstream
resource on route j, by t + A" 4 i

4.5.2 Impact of Short-term Weather Forecast

In the original formulation, it is assumed that scenario tree (Figure is obtained from probabilistic
weather forecast, and the new operational conditions are not known until they have actually changed.
In other words, we have to wait until the branch point to know which scenario actually materializes.
In reality, since the short-term weather forecast is rather accurate, it is reasonable to assume that we
know which scenario will happen a few time periods in advance.

Assuming that the one-hour weather forecast is exactly accurate, then the scenario tree about the
weather information (Figure is the left translation of the scenario tree for actual physical capacity
(Figure . For example, at 2000Z or t1, which is the beginning of stage 1, we only need to impose

. . Q9.
52,t1,ij = (537,5171‘]' Vi € 9,] c ﬁ.i,tl S Tz‘j J (83)
even though physical capacities still satisty My ; = M| o = M, 5. Compared with the original

implementation, because of additional information brought by the short-term weather forecast, the
nonanticipativity constraints will be less restrictive and lower system costs can be achieved.
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Figure 16: Effect of Short-term Weather Forecast

4.5.3 Impact of Minimum Notification Time

In the original formulation, it is assumed that a flight is ready to take off anytime at or after the
scheduled takeoff time. It is more reasonable to require the model to make the ground delay and
reroute decision a certain time before the scheduled departure time so that the airline agents can have
some preparation time and have time decide when to let passengers board.
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Figure 17: Combined Effect of Short-term Weather Forecast and Minimum Notification Time

For example, if we require the reroute decision to be made 30 minutes before scheduled departure
time, the effect is that scenario tree in Figure will be translated 2 time periods to the right, shown
in Figure [I7} Nonanticipativity constraints need to be modified accordingly.

4.6 Formulation Properties

Before coming up with the formulations introduced in this section, in [58], we proposed an alternative
integer programming formulation to solve problem 2. The advantage of this alternative formulation is
that ground and air delay are explicit decision variables and are more straightforward to management.
For example, it is easier to model flight which speeds up and arrives earlier when flying from one
region to another. Since the primary decision variables in the current formulation are all binary, we
call the current formulation binary model. The alternative formulation is referred as integer model. In
this and next section, we will compare the problem size and computational performance of these two
formulations.
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Table 6: Model Complexity of Disaggregate Models

Lagrangian Lagrangian-Eulerian
Variables Constraints Non-zeros Variables Constraints Non-zeros
With Static 53,462 8,730 152,232 17,532 3,698 51,524
i (1) . out  gemi-dynamic 55,242 9933 154,638 49,656 8,796 145,902
Integer Dynamic 97,584 20,892 260,358 91,998 19,758 247,668
Model Witk Static 63,801 14,969 188,688 27,049 5,144 77,605
T(l)tS Semi-dynamic 69,273 20,389 204,176 78,087 19,534 237,287
Dynamic 130,074 30,463 410,111 137,703 25,504 37,2563
Without | Static 65,652 118,368 323,674 33,426 50,490 130,104
TOIS oM Semi-dynamic 142,452 217,763 565,696 142,350 215,579 559,966
Binary Dynamic 142,452 204,660 539,490 142,350 202,476 533,760
Model = Static 100,899 181,736 499,104 51,025 77,550 198,859
. 5 s Semi-dynamic 219,411 335,868 935,352 217,839 330,672 920,433
Dynamic 219,411 315,754 895,118 217,839 310,546 880,181

4.7 Model Comparisons

Table 7: Disaggregate Stochastic Models Comparison Without TOS

Lagrangian vs. Ground Delay Periods Air Holding Periods Integer Model Binary Model

Iéiifil;ilan If This Scenario Occurs: If This Scenario Occurs: Expected Cost Running Time Early Stop Running Time
Scenl Scen2  Scen3  Scenl Scen2  Scen3 mins at 1min/3mins mins
Scenl 90 90 90 0 203 411 499.0 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Scen2 285 285 285 0 0 218 415.8 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Scen3 489 489 489 0 0 0 489.0 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Two-stage Model 284 284 284 0 1 205 407.8 0.61 0.12 (LP Rlx)
Semi-dynamic Model 164 285 417 0 0 73 332.1 3.85 334.6/332.1 0.23 (LP Rlx)
Dynamic Model 125 288 477 0 0 13 303.6 > 10.0 306.1/303.9 0.21 (LP Rlx)
Perfect Information 90 285 489 0 0 0 287.7
Scenl 93 93 93 0 194 391 482.8 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Scen2 284 284 284 0 0 200 404.0 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Scen3 484 484 484 0 0 0 484.0 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Two-stage Model 284 284 284 0 0 200 404.0 0.01 (LP RIx) 0.04 (LP Rlx)
Semi-dynamic Model 163 284 417 0 0 69 329.0 0.40 0.20 (LP Rlx)
Dynamic Model 127 284 472 0 0 12 300.5 7.69 300.5 0.21 (LP Rlx)
Perfect Information 93 284 484 0 0 0 286.7

Table 8: Disaggregate Stochastic Models Comparison With TOS

Lagrangian vs.

RTC Costs in Mins

Ground Delay Periods

Air Holding Periods

Integer Model

Binary Model

;i%:z:!g:an If This Scenario Occurs:  If This Scenario Occurs:  If This Scenario Occurs: Expected Cost  Running Time Farly Stop Running Time
Scenl Scen2  Scen3  Scenl Scen2  Scen3  Scenl Scen2  Scen3 mins at 1min/3mins mins
Scenl 76 6 76 56 56 56 0 142 285 350.73 < 0.01 (LP RIx) < 0.01 (LP RIx)
Scen2 222 222 222 109 109 109 0 0 70 180.60 < 0.01 (LP RIx) < 0.01 (LP Rlx)
Scen3 286 286 286 144 144 144 0 0 0 182.13 < 0.01 (LP Rlx) < 0.01 (LP Rlx)
Two-stage Model 272 272 272 108 108 108 0 0 38 167.07 0.20 0.19 (LP Rlx)
Semi-dynamic Model 216 256 268 86 108 130 0 0 22 154.21 0.08 0.64 (LP RIx)
Dynamic Model 216 256 268 73 110 136 0 0 16 149.31 1.86 149.31 0.58 (LP Rlx)
Perfect Information 76 222 286 56 109 144 0 0 0 129.92
Scenl 76 76 76 58 58 58 0 141 308 365.73 < 0.01 (LP RIx) < 0.01(LP RIx)
Scen2 222 222 222 105 105 105 0 0 69 176.00 < 0.01 (LP Rlx) < 0.01(LP Rlx)
Scen3 286 286 286 132 132 132 0 0 0 170.13 < 0.01 (LP RIx) < 0.01(LP RIx)
Two-stage Model 270 270 270 106 106 106 0 0 29 159.40 < 0.01 0.02 (LP Rlx)
Semi-dynamic Model 216 256 268 84 104 123 0 1 26 147.11 0.09 0.09 (LP Rlx)
Dynamic Model 216 256 268 4 105 128 0 0 13 143.41 0.49 0.13 (LP RIx)
Perfect Information 76 222 286 58 105 132 0 0 0 125.32

The main results are listed in Tables [7] and [§] There are some key findings from the tables:

1. The first row of Table [7] should be read as follows: if we plan ground delay only according to
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scenario 1 and ignore the information of scenario 2 and 3, the deterministic policy obtained tells
us that a total of 90 units of ground delay need to be assigned to flights. If we implement this
deterministic policy in reality, the expected cost under all scenarios is 499.0.

Note that when planning ground delay it is possible there are two deterministic policies which
achieve the same objective value. But when implementing these two policies, one obtains lower
expected cost than other one.

. There are small discrepancies between Lagrangian and Lagrangian-Eulerian model results. For
example, the objective value of two-stage with TOS Lagrangian model is 407.8, whereas the
corresponding Lagrangian-Eulerian model value is 404.0. The cause of this difference is that the
travel time between two PCAs may differ for different flights. In Lagrangian-Eulerian model,
average travel time is used when planning the traffic flows.

. Lagrangian-Eulerian models without TOS also solve the problem 1. If we compare the solutions
with aggregate model results in Table , they are exactly the same, which is anticipated.

. The overall system cost could decrease by over 50% if flight operators submit TOS options for
flights. This shows the huge benefit of allowing rerouting in the face of congestion.

. The two-stage solution outperforms the deterministic policy (Scen 1-3), as it should, since it
explicitly considers the uncertainty when making holding decisions. The semi-dynamic model
solution is better than the two-stage model solution, and the dynamic model in turn performs
better than the semi-dynamic model, which is also expected, because the dynamic model uses
more weather evolution and flight schedule information than the two-stage static model.

. In the case where flights do not have reroute options, adjusting ground-holding policy is vital
and brings down the cost by over 25%. If flights can choose to reroute, the benefit of dynamically
changing departure time is less significant, but can still decrease the total cost by more than 10%
if using a fully dynamic case instead of a deterministic or a two-stage stochastic model.

. In this use case, integer solutions can be directly obtained from linear programming relaxation,
for all six stochastic binary models and for both no-route and reroute cases. Whereas in previous
integer formulation, we had fractional solutions from solving linear relaxation. This indicates
that binary model formulation seems to be a stronger formulation compared with previous integer
formulation.

. Lagrangian-FEulerian models are in general considerably faster than Lagrangian models. This is
one of the motivations to develop Lagrangian-Eulerian models.

4.8 Summary of Aggregate and Disaggregate Models

In this section, we summarize and compare 9 CTOP related stochastic models we have introduced so
far, which are listed in Table [9] This table not only elucidates the nuances of different CTOP models,
but also can guide researchers to develop new models for future TMIs, which is valuable for air traffic
flow management research.

Table 9: Comparison of Aggregate and Disaggregate Stochastic CTOP Models

Aggregate models Disaggregate models Disaggregate-aggregate models

Eulerian models Lagrangian models Lagrangian-Fulerian models
Static [59] §1IV [58] §IITA [58] §I1IB
Semi-dynamic [59] §V [58] §SIVA [58] §IVB
Dynamic [59] §VI [58] §VA 58] §VB
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It is not hard to see that none of these 9 models can be directly used in the current CTOP software.
Aggregate models are proposed to solve problem 1, which do not consider demand uncertainty. Two
classes of disaggregate models are formulated to tackle problem 2, which are based on the assumption
that ground delay and reroute can be directly assigned by FAA traffic managers. In addition, all
semi-dynamic and dynamic models are not compatible with the current CDM-CTOP software because
current software does not support conditional delay (and reroute) decisions, same as in the GDP case.

In the literature, one definition of CDM-compatibility is that the model should be able to ac-
commodate FAA and airline operations, including intra-airline cancellation and substitution and slot
compression, etc. In this loose sense, the disaggregate models can be made to be consistent with CDM
philosophy, as introduced in [60].

Aggregate models can be seen as solutions to an intermediate TMI between GDP/AFP and CTOP.
Moreover, once flights have chosen route, aggregate model can be use as basis for traffic flow simulation,
as will be discussed in section [A.5l

4.9 Conclusions

In this section, six stochastic models are proposed to address problem 2 (section , which generalize
the classical GDP planning models to the case of multiple constrained regions multiple reroute options.
Similar to the last section, we have demonstrated the benefits of making use of scenario tree, flight
information and developing dynamic stochastic models. We have shown how additional short-term
weather information and additional minimum notification time requirement can affect the implemen-
tation of nonanticipativity constraints, and how we can incorporate variance and risk considerations
and still have MILP formulation. Though important information can be obtained from solving aggre-
gate and disaggregate models, we point out that they do not address problem 3, which will be solved
in section [B

5 Stochastic and Simulation-based Optimization Model for Setting
Flow Rates in Collabrative Trajectory Options Program

5.1 Introduction

In this section, we address the problem 3 in section It is fair to say that problem 1 and 2 play
important ancillary roles in this work, while problem 3 is the very problem we want to solve because
it is the exact real-world problem that has practical value.

In aggregate and disaggregate models, the concept of FCA is not used, whereas the goal in problem
3 is to set traffic flow rates for FCAs in CTOP. In section [5.2] we discuss in detail about the differences
between FCA and PCA, properties of FCA-PCA network, etc. There are two natural ideas to handle
TOS-induced demand uncertainty in CTOP:

1. Design algorithm that only uses capacity information to decide FCA rates.

2. Start with a demand estimation, iteratively compute the traffic flow rate, then re-estimate the
demand. Hopefully after each iteration demand estimation can be improved, and after a few
iterations, the computation loop will converge and optimal traffic flow rates can be obtained.

For the first thought, it has been proved in [64] that even in this single congested region case, in
general this kind of algorithm cannot provide optimal solution. For the second thought, a computation
loop will be needed. In section we will explain why this computation loop will converge to bad
solution due to conservative planned acceptance rates issue explained in [64], and the demand shift
issue. In section[5.4] we will talk about how simulation-based optimization can bypass these two issues
and provide good suboptimal solution. Saturation technique and these two natural ideas will only be
used as heuristics to compute initial search points. Then local search algorithm will be applied to find
better candidate solutions. Numerical results will be introduced in section In section we
will recapitulate the findings in this section.
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5.2 Flow Constrained Area, Ground Delay and Traffic Flow Rates

Figure 18: Illustration of FCAs and PCAs

5.2.1 Flow Constrained Area and Potentially Constrained Area

As mentioned in section Flow Constrained Area (FCA) was first introduced in AFP to model
en route airspace constraint. Different from a PCA which coincides with a physically constrained area
and whose future capacity is stochastic, a FCA is an artificial line or region in the airspace and serves
like a valve to control traffic flows into a region. In this work, The future capacity of a PCA is modeled
as scenario-based, which corresponds to multiple sets of possible capacity values, e.g. PCAOQ in Table
By contrast, planned acceptance rates of a FCA correspond to a single vector. Figure [18] depicts
both FCAs and PCAs in a traffic management setting.

In AFP, the distinction between FCA and PCA was not made in the literature, because there is
one constrained region (PCA), and the FCA can be considered as directly lying atop that PCA. In
CTOP, we need to explicitly distinguish the control mechanism (FCA) with the source of congestions
(PCA) for two major reasons. First, the number of FCAs may not be the same as the number of PCAs,
and FCAs may not co-locate with PCAs. Second, a FCA corresponds to ground delay at departure
airports, whereas traversing a PCA corresponds to scenario-dependent air delay. Since it does not
make sense for a flight to take scenario-dependent air delay after pass a PCA, then take ground delay
at its origin airport, therefore traffic flows from PCAs can not be fed into FCAs, consequently FCAs
and PCAs need to be differentiated.

5.2.2 FCA-PCA Network, Why One FCA for Each Path

In the section, the concept of FCA-PCA network is used, which is a directed graph that links FCAs
and PCAs and is an extension to the PCA network. This concept gives structure to our problem and
allows us to use various network flow optimization techniques.

5.2.3 Implicit FCAs in Aggregate Models, Scenario-dependent Ground Delay

A FCA controls the traffic flow by assigning slots to its impacted flights, which can be translated into
ground delays. In static aggregate model, flights are assigned with ground delays before entering into
PCAs. Essentially, it can be understood that for each path there is an implicit FCA lies atop of the first
PCA of that path. In semi-dynamic and dynamic aggregate models, flights are assigned with scenario-
dependent ground delays. Since the current definition of FCA does not support scenario-dependent
conditional slots, therefore FCA cannot be used in semi-dynamic and dynamic models.
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Figure 19: Geographical Display of the FCA-PCA Network

From the above discussion we can see that FCA is only an artificial concept, and in some cases it
is not needed in mathematical formulation and in managing traffic flows.

5.2.4 Implication of One FCA Managing Multiple “Paths” of Traffic Flows

In Figure[I9] air traffic managers create one FCA for each PCA, which is in line with the intuition. In
this case, for example, FCA1 will control flights on two paths. However, in general, using one FCA to
manage multiple traffic streams is not the optimal way to manage the traffic flow.

Assume the route information of each flight is known (the same assumption we made for aggregate
models), there are two ways to optimize FCA planned acceptance rates:

1. In the direct way, we need to model the split of traffic low out of FCA1. To make sure the model
is linear, the flow split ratios need to be pre-calculated as parameters. Since they are calculated
using schedule data, if some flights are ground delayed for one time period, then the model will
use flow split ratio in the next time period to model the movement of these flights, which will
likely result in the violation the original flight route schedules. Also, since these ratios are real
numbers, we cannot impose integrality constraints on decision variables. Hence, optimal solution
is not guaranteed.

2. In the indirect way, we can run static aggregate model and obtain the planned acceptance rates
for path PCA1— EWR and path PCAl1— exit, then sum these two rates to get the rates for
FCA1. This is only a heuristic and there is no optimality guarantee.

The conclusion is that, assume demand is known, to manage multiple constrained resources precisely
and optimally, we need one FCA for each path of flights. And FCA designed for controlling flights on
one path needs to exempt flights belonging to other paths.

5.3 CTOP FCA Rates Planning, Demand Shift Issue, Rate Computation Loop

In this section, we first explain why CTOP FCA rates planning problem cannot be solved as a single
MILP model like in the disaggregate model or in the GDP planned problem. Next, we introduce
the idea of rate computation loop. Then we talk about why this seemly attractive idea, if not using
with additional heuristics, will result in bad solution. This section shows the complexity of solving
problem 3 only in the stochastic programming framework, and motivates us to tackle this problem
using simulation-based optimization approach.
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5.3.1 Why Not Single Optimization Model, Rate Computation Loop

The main reason why a single MILP model is not sufficient to address problem 3 is that we need to
follow CDM principle. Ground delay and route assignments have to comply with CTOP slot allocation
algorithm, which is highly nonlinear (appendix). Optimizing reroute and delay for each flight while
ignoring slot allocation rules is relative easy, as we have done in section [d, However, it is intractable to
optimize reroute and delay at the same time while exactly satisfying all the rules in the slot allocation
algorithm.

Initialization

A. Create resource topology
B. Input PCA capacity scenarios

C. Input (or model) TOSs

D. Compute base flight trajectories

CTOP Allocation

1. Run CTOP resource allocation [«

2. Compute new flight trajectories

\ 4

. FCA rates have
Demand Modeling changed from

3. Compute demand on resources prior iteration of

steps1 -5 (or
this is the first

L iteration)

v

\

FCA Rate Optimization

4. Run rate optimization model

5. Extract planned FCA rates
Reroute + delay costs minimized

Figure 20: Rate Computation Loop

As proved in [64], in general demand information is needed to make optimal traffic flow rates
decision. In CTOP, due to TOS-induced demand uncertainty, demand information is unknown to
air traffic managers before setting the FCA rates. To solve this dilemma, an idea is to start with a
demand estimation, e.g. assuming all flights will choose their most preferred routes, then solve FCA
rates planning problem with know demand, which is an easy problem and almost the same problem
has been addressed by static aggregate model. This computation loop is shown in Figure 20| After
getting FCA rates, we run the TOS allocation algorithm, which ensures fairness in this iteration, get
the new route and ground delay for each flight, and compute the new demand to each congested region.
It is hoped that compared with the initial demand estimation, this will be a better estimation. Based
on this new demand estimation, we will do another iteration of FCA rates optimization. Clearly, there
is a computation loop here. We name it Rate Computation Loop [65].

Ideally, rate computation loop will converge after few iterations and will converge to good FCA
rates solution. In practice, there is no need to worry about the convergence issue. We only need to
run it for several iterations and pick the FCA rates that minimize total reroute and delay costs.

In the next section, we will explain why the intuition about rate computation loop is wrong, if no
additional heuristics are used.
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5.3.2 Demand Shift Issue and Conservative FCA Rates Issue

Demand shift issue in CTOP refers to the phenomenon that after solving the rate planning optimization
problem given a demand estimation and run CTOP slot allocation algorithm, the demand may shift
from one FCA to another FCA, and invalidate the proposed acceptance rates. In rate computation
loop, it is addressed by resolving rates optimization problem whenever demand changes.

Conservative FCA rates issue, which was introduced in [64], refers to the fact that in air traffic flow
rate optimization models, the planned traffic rates are computed based on the lesser of demand and
capacity. We have shown that this issue makes static GDP model susceptible to demand uncertainty.
However, if this is considered a minor defect for GDP problem, then it is a major problem in CTOP
FCA rates planning. If in the first iteration, very few or no flights are scheduled to traverse a certain
FCA, then FCA rates computed from rate optimization model would be near or equal to zero. The
CTOP allocation algorithm will consider this FCA being heavily restricted/fully blocked and will
allocate very few/no slots to flights. Then in the next iteration, there will be very few/no flights
rerouted to this FCA, even though there may be a lot of airspace capacity available behind this FCA.
Following the same reasoning, in future iterations, the FCA rates will continue being low. In summary,
just because the first demand estimation is not accurate, we end up with not fully using a region of
airspace and obtain very bad solution.

It can be seen that these two issues are coupled. If there is no demand shift issue, even though
a conservative FCA rates policy might not be robust to small demand perturbation, it is in general
acceptable, like in the GDP problem. If ideally, FCA rates are optimal with respect to any demand
information, then demand shift issue will not be a problem. Even if FCA rates are not ideal, as long as
they are not conservative and give flights more reroute opportunities, we may have better FCA rates
solution.

In summary, due to TOS-induced demand uncertainty, the dependence on demand information for
optimal rates planning, demand shift and conservative FCA rates issues, only suboptimal CTOP FCA
rates can be hoped to obtain. In the next section, we will talk about how to develop heuristics to find
initial solutions, and how can simulation-based optimization be used to make improvement on these
initial search points.

5.4 Simulation-based Optimization, Heuristics

Simulation-based optimization integrates computer simulation with optimization technique. It is often
applied to problems in which evaluating a solution involves running simulation models. A classic
example is aircraft airfoil design. One has to run complicated computational fluid dynamic models in
order to assess a set of proposed parameters [60].

The main reason we consider simulation-based optimization is that it can directly optimize FCA
rates without worrying about either conservative FCA rates issue or demand shift issue. However,
CTOP rate planning problem is a more challenging problem compared with [50] or [5I]. In CTOP,
we can have up to 5 FCAs, so the dimension of solution space is much larger than the GDP problem.
To provide real-time decision support, a solution needs to be reported in around 5 minutes, which is
a more restrictive requirement than in problem [5I]. Therefore, tradeoffs and compromises need to be
made. In this section, we use simulation-based optimization as a way to do local search and refine the
solutions we find using heuristics. Specifically, we adopt the following two-phase approach:

1. In phase one, we use stochastic programming methods and heuristics including saturation tech-
nique to quickly find good initial starting points.

2. In phase two, for a subset of FCAs, we employ local search method like pattern search to carefully
find better solutions.

Pattern search is classic derivative free local search method. It is composed of two types of moves: ex-
ploratory search, which is used to find an improving direction by checking points in the neighbourhood;
pattern move, which searches in the improving direction and will keep move as long as improvement
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continues [67]. In CTOP rate planning problem, all decision variables are integers and bounded, there-
fore small modifications about the original algorithm need to be made to accommodate discrete step
size and variable range.

Depending on the complexity of the CTOP use case and the amount of computing power available,
more sophisticated heuristics that can potentially find better initial solutions or do more efficient
local/global search can be considered. This two-phase pattern search based local search approach is
one of many options one can choose from. In this section, we use it to obtain a fully CDM-CTOP
compatible solution and compare it with various benchmarks in section [3| and

5.4.1 Three Heuristics

In this section, we introduce three heuristics that are used to find initial search points, and talk about
the motivation behind each heuristic.

5.4.1.1 Only Use Capacity Information

In this first heuristic, only capacity information is used to determine FCA rates, which is the approach
the FAA will probably prefer to take today. For example, FCA1 is created to limit the traffic flow into
PCA1. Then planned acceptance rates of FCA1 are set the same as the reduced capacity of PCAL.
The reduced capacity can be obtained from weather translation model (section . In probabilistic
weather forecast case, usually the most likely capacity scenario can be used as FCA rates. In this work,
the FCA rates are obtained by doing linear interpolation of three capability scenarios. In this way, we
can clearly see the trade-off between conservative and nonconservative FCA rates.

5.4.1.2 Saturation Technique, Non-iterative Version
To alleviate the impact of demand shift issue, we want to find approximate upper bounds of FCA
acceptance rates, which could allow flights to reroute to previously not fully utilized resources. Through
several iterations of computation, we hope a good planned acceptance rates that enable flights to take
better use of all resources can be obtained. To get approximate upper bounds of FCA rates, saturation
technique introduced in [64] will be used. There are different ways to apply this technique.

In the previous version, we will not use any TOS information, and will simply apply high demand
to all FCAs in each time period and solve a single stochastic programming problem.

In this version, no demand information is used and solution is solely dependent on the topology of
the FCA-PCA network and the scenario-based capacities of PCAs. And we do not need to run CTOP
slot allocation algorithm.

5.4.1.3 Demand Guided Saturation Technique, Iterative Version
In the second version, demand information and rate computation loop are used together with saturation
technique in setting FCA rates. The algorithm is as follows:

1. Increase demands to FCAs proportionally to sufficiently large numbers .

2. If the demand to a FCA is 0 at a time period, we will set it as some default small value like 1,
such that the planned acceptance rate is not always zero.

3. Run CTOP slot allocation algorithm based on the rates obtained, obtain a new demand estima-
tion, go to step [I} Exit if the rates are satisfactory.

5.4.2 Experimental Results

To test the performance of simulation-based optimization, we continue using the test case with con-
vective weather activity in southern Washington Center (ZDC) and EWR airport. We assume there is
a four-hour capacity reduction in ZDC/EWR from 2000Z to 2359Z. By analyzing the traffic trajectory
and weather data, we can build the FCA-PCA network, shown in Figure In this use case, each
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FCA directly lies atop of the corresponding PCA. As we discussed section ideally there should
be two FCAs in front of PCA1, instead of just FCA1l. However, the FCA-PCA network in Figure [7] is
what most air traffic manager would design and it is what our subject matter experts recommended.
In this case, FCA rates will be calculated in directly (section using the solutions from the static
aggregate model.

The CTOP TOS allocation algorithm and stochastic flow simulation algorithm (appendix) are
coded in Python. Evaluating one FCA rates policy takes around 0.3 second.
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5.4.2.1 First Phase Results

Figure [21| shows the result for the capacity interpolation heuristic (the first heuristic). In this use case,
the capacity in scenario 1 is strictly better than scenario 2, which is in turn better than scenario 3. In
Figure [21] the leftmost bar corresponds scenario 3. A lot of ground delay costs are occurred because
of the very conservative FCA rate policy. The rightmost bar corresponds to scenario 1. We see a lot
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more air delay because of aggressively large FCA rates. The bars in middle are first phase solutions
obtained by the capacity interpolation heuristic.

Figure 22] shows the performance of two saturation heuristics. Second saturation heuristic takes
four iterations to converge, which performs slightly worst than first saturation heuristic (346.06 versus
331.19). It happens in this case the FCA rates obtained from firth saturation heuristic are the same as
from capacity interpolation results, which also happen to be the same as the second capacity scenario
(Table [2).

After these initial search points are obtained, in phase 2 pattern search is used to find better FCA
rates. To reduce the dimensionality of the search space, only FCA rates of EWR and FCAQ will be
further improved in the next phase, because they are the most congested two PCAs (Figure and

)

5.4.2.2 Second Phase Results
From the starting point obtained in the first saturation heuristic and capacity interpolation, pattern
search converges in 3.7 minutes and reduces the system cost from 331.19 to 324.39 (2.1% decrease).
From the starting point obtained in the second saturation heuristic, pattern search converges in
3.7 minutes and reduces the system cost from 346.06 to 324.36 (6.3% decrease). The final solution is
listed in Table which is close but not the same as the second capacity scenario.
It can be seen that pattern search method is quite efficient and effective in further reducing the
system cost, and multiple starting points can help to find the best final solution.

Table 10: FCA Rates Final Solution

Resource 20:00 15 30 45 21:00 15 30 45 22:00 15 30 45 23:00 15 30 45 00:00 15 30 45 01:00 15 30 45
FCAO 13 14 13 13 13 13 13 13 13 13 24 25 25 25 26 25 25 25 25 25 25 25 25 25
FCA1 44 44 44 44 44 44 44 44 44 44 50 50 50 50 50 50 0 KO 50 50 50 50 50 50 50
FCA2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8 9 9 9 7T 8 8 8 8 10 11 10 10 9 11 10 10 10 10 10 10 10 10

5.4.3 Compare with Benchmarks

It is interesting to compare the objective value of simulation-based optimization model with the bench-
marks we got in sections[3|and 4] even though they are the objective values of slightly different problems.

In the two-phase simulation-based model, equity is built-in because of the CTOP slot allocation
algorithm. In static aggregate model (section , flights do not have reroute options and the equity
issue is not ezplicitly considered (see the discussion in section . In the two-stage disaggregate model
(section , the goal is to minimize system cost without considering any equity issue.

1. Compared with static aggregate model without reroute whose objective value is 404.0, simulation-
based model achieves a lower system cost (324.36). If equity issue is explicitly considered in
aggregate model, it is expected that the gap will be even larger. This shows the benefit of
allowing rerouting in the face of congestion.

2. Compared with two-stage disaggregate model whose objective value is 167.07, the objective value
of simulation-based model is almost two times larger. This shows the price of fairness.

5.5 Conclusions

In this section, we discussed in detail about the properties of FCA-PCA network, and revealed why
problem 3 (section is substantially more challenging due to TOS-induced demand uncertainty,
the dependence on demand information for optimal rates planning, demand shift and conservative
FCA rates issues. We proposed a two-phase simulation-based optimization framework which combines
stochastic optimization model, saturation heuristic and local search. Through a representative use
case, we have demonstrated that this framework is efficient and effective.
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6 Contributions

The contributions of this paper are now summarized:

1.

We first addressed a simplified CTOP planning problem: assume each flight only has one route
option, how to optimally management traffic flow rates to minimize system-wide delay cost? We
revealed why it is in nature a multi-commodity flow problem, and gave the correct boundary
conditions for such a problem. Three aggregate stochastic programming models are proposed,
which can dynamically ground hold flights by exploiting weather and flight schedule information.
These aggregate models not only play an integral role in CTOP FCA rates optimization, but can
also be used in air traffic flow simulation.

Two families of disaggregate stochastic models are then proposed, which generalize the classic
GDP planning models to the case of having multiple constrained resources multiple reroute
options. In the stochastic optimization framework, the dynamic stochastic models can give the
theoretic lower bound for the system delay and reroute costs.

We revealed that planned acceptance rates proposed by aggregate CTOP models may be set
lower than necessary simply because there was not sufficient demand to warrant a higher rates,
and investigated the impact of demand uncertainty on these models.

This work gives the first algorithm that optimizes CTOP FCA rates under both demand and
capacity uncertainty and is compatible with the CDM-CTOP framework, which provides much-
needed decision support capabilities for effective application of CTOP.

All nine CTOP related stochastic programming models have good formulation properties and are
promising in computation time. They can be coded in decision support tools to help air traffic
managers implement and perform post-analysis for air traffic flow programs.
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A CTOP Algorithm

A.1 Assumptions

e There is only one activate TMI, which is the CTOP being implemented. TMI interaction is not
considered

e Pop-up flights or cancelled flights are not considered

e Trajectory Valid Start Time (TVST), End Time (TVET), and Route Minimum Notification
Time (RMNT) restrictions are not considered

e For simplicity, assume the start and end times for all FCAs are the same

A.2 Algorithm Input

e For each FCA r, its activation time, acceptance rate P; at each 15 minutes time period and
filters

e For each flight, the unimpeded FCA arrival time for each of its TOS option

A.3 Slot Creation

We create evenly spaced slots for each time period based on given acceptance rate. The i-th slot in
time period t FCA r is:

15 x 60
Py

slotj (i) = round((i — 1) x

) (84)

A.3.1 Example 1

The acceptance rate at FCA1 from 00:00Z to 00:15Z is 1. Then slot space is 900s. The slot is at
00:00:00Z.

A.3.2 Example 2

The acceptance rate at FCA1 from 00:00Z to 00:15Z is 3. Then slot space is 300s. The slots are at
00:00:00Z, 00:05:00Z, 00:10:00Z.

A.4 Slot Allocation Algorithm

Algorithm 1 CTOP TOS Allocation Algorithm [6§]

1: Determine flights included by the CTOP program. A flight is included in CTOP if any TOS route
intersect any of the CTOP’s FCAs during active periods

2: Determine flights that are part of CTOP demand but are exempted

3: Assign slots to exempted flights first

4: Sort flights by Initial Arrival Time (IAT), which is the earliest FCA arrival time at any of a CTOP’s
FCAs using any of the flight’s TOS options

5: Once at a time, in IAT order, assign each flight the lowest adjusted cost trajectory and slot

If a TOS route intersect two or more FCAs. Take the second FCA as an example: slot will be
marked as used by finding the first available slot in this FCA that has a time equal or later than the
time at the flight would intersect this FCA if flight departing at its ETD, which would include any
delay first (primary) FCA imposes.
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A.4.1 Example

Flight AA609 has two TOS options. The scheduled departure time is 00:00Z.

e The first TOS option intersects FCA1 with unimpeded arrival time 02:00Z, and land at destina-

tion airport with unimpeded arrival time 03:00Z. The RTC for route 1 is 0. If taking route 1,
the first available slot at FCA 1 is 02:05Z, the first available slot at destination airport at/after
03:05Z is 03:15Z. The adjusted cost is:

RTC + Assigned ground delay = 0 + 5 = 5 minutes

If second TOS option intersects FCA2 with unimpeded arrival time 02:15Z, and land at destina-
tion airport with unimpeded arrival time 03:15Z. The RTC for route 2 is 15. If taking route 2,
the first available slot at FCA2 is at 02:15Z, the first available slot at destination airport at/after
03:157 is 03:15Z. The adjusted cost is:

RTC + Assigned ground delay = 15 4+ 0 = 15 minutes

Route 1 will be assigned to AA609, even though flight will have to take 5 minutes ground delay

and 10 minutes air delay.

A.5 Stochastic Flow Simulation Algorithm

We will only consider the cost for non-exempted flights. The total cost is composed of three parts:
reroute cost, ground delay cost incurred by FCAs, air delay cost incurred by PCAs capacity constraints.
After we run the CTOP allocation algorithm, we can easily calculate the costs of first two parts, and

we will know Sﬁ p

solving the following optimization problem, we will know the third part.

which is the number of flights that will reach PCA k on path p in time period ¢t. By

win e, Y, Y030 Y 4l )
qeEQ  teT peP kep
if k=py SF,— (A9 — APY
T ( g ;;—qlvp) b VteT,qeQpePkep  (86)
’ else UpPCAgy — (A, — A,
UpPCA;Y = L%, vieT,qe Q (K, k)ep  (87)
> Lyd < M, VteT,qe QkeP  (88)
peZ
Ly APl e 7y VteT,qeQpe P kcp  (89)
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