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A B S T R A C T

In European air traffic management, there are discussions regarding the future role of the
network manager (NM): in particular, should the NM be able to assign flights to specific
trajectories, should airspace users be allowed to freely choose their preferred trajectory, or
something in between? In this paper, we develop a modeling framework that can be adapted
to these settings to assess their effect on key performance indicators.

We focus on the pre-tactical stage of planning air traffic for a future departure day, meaning
that airspace capacity budgets are given and incoming flight intentions need to be offered one
or several ‘trajectory products’ for a (possibly dynamically determined) charge. These trajectory
products differ in the amount of flexibility that they provide the NM to route the flight. Charges
are set so as to reward greater flexibility of airspace users with lower charges. The airspace
user chooses one of the offered trajectory products according to a choice model that reflects
their preferences given, among others, the product charges. Shortly before the departure day,
the NM decides simultaneously on the routing (within the limits defined by the purchased
trajectory products) and on each airspace’s sector opening scheme (within the limits of the
fixed capacity budgets) so as to minimize the overall displacement cost. Methodologically, the
problem deviates from typical dynamic pricing problems in various major ways, e.g., featuring
a boundary condition that we show to be NP-hard as well as fairness and revenue neutrality
constraints. The problem is cast in the form of a dynamic program. We exploit a certain structure
in the boundary condition to formulate an efficient heuristic. Based on a numerical case study,
we find that the use of dynamically priced trajectory products achieves a cost performance close
to the one obtained if the NM has a mandate to simply assign flights to trajectories. Therefore,
this seems an attractive design for the role of the NM, giving airspace users some choice whilst
achieving low overall costs.

. Introduction

The European air traffic management (ATM) environment features significant demand–capacity imbalances leading to costly
onsequences. According to Eurocontrol (2018), in a typical week in June 2017, demand for ATM services in Europe exceeded
apacity 7% of the time (creating potential flight delays), while the sector load was below 60% of capacity half of the time (creating
arge spare capacity). As a result, 3.6% of flights in the area were affected by ATM-related delays, creating delay costs of EUR 550
illion that year. The observed demand-capacity imbalances are mainly due to fragmented and often inflexible capacity planning
hilst facing uncertainty in demand (especially non-scheduled flights that account for about 20% of all flights) and disruptions in

∗ Corresponding author.
E-mail addresses: jan-rasmus.kuennen@whu.edu (J.-R. Künnen), arne.strauss@whu.edu (A.K. Strauss).
vailable online 4 May 2022
191-2615/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.trb.2022.04.004
eceived 27 May 2021; Received in revised form 3 March 2022; Accepted 15 April 2022

http://www.elsevier.com/locate/trb
http://www.elsevier.com/locate/trb
mailto:jan-rasmus.kuennen@whu.edu
mailto:arne.strauss@whu.edu
https://doi.org/10.1016/j.trb.2022.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2022.04.004&domain=pdf
https://doi.org/10.1016/j.trb.2022.04.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transportation Research Part B 160 (2022) 76–96J.-R. Künnen and A.K. Strauss

t
o
c
N

d
a
b
e
t
s
o

p
p
t
f
o
u

t
r
d
i
t
b
t
i
o
t

p
c
n
b
m
p
m

p
N
m
t

w
W

2

m
A
h
f
A
t

capacity provision, see Eurocontrol (2018). Once strategic capacity budgets have been determined months in advance, there are
only limited options to adjust capacity on short notice. One such option is to change the planned configurations of airspaces subject
to the fixed strategic capacity budget. Otherwise, at the pre-tactical level, the network manager (NM) can only implement demand
management measures such as assigning delays or rerouting flights to minimize the associated costs.

The Wise Persons Group (WPG), which was set up to provide direction for the future of European ATM, states that ‘‘if efforts
o accommodate demand are not successful and airspace congestion continues, not only would this have a detrimental effect
n passengers and other stakeholders, it would also inevitably result in longer flight trajectories, and consequently higher fuel
onsumption and levels of CO2 emissions’’ (WPG, 2019). To counter the inefficiencies, the WPG recommends a stronger role of the
M in routing decisions and ‘‘relying on a market-driven approach wherever possible’’ (WPG, 2019).

A natural question arising in this context is what should be the future role of the NM. In this paper, we focus specifically on
eveloping a modeling framework that can be used to assess the implications of different roles of the NM in pre-tactical ATM. We
lways assume that the NM is able to decide which airspace runs in which configuration subject to an exogenously given capacity
udget; our focus is on demand-side interactions. From a cost minimization perspective, an extreme setting would see the NM
mpowered to assign trajectories (including delays or reroutings) shortly prior to departure to all flights. However, it is unlikely
o happen in practice since airspace users (AU) would typically also want some influence on their trajectories. In another extreme
etting, AUs would have the choice among all feasible trajectories — which can be expected to result in poor cost performance
verall.

We show that the concept of dynamically priced flexible ‘‘trajectory products’’ (first proposed by Ivanov et al. (2019)) has the
otential of offering an excellent trade-off between the two extremes, with some choice being granted to the AUs according to their
references whilst resulting in a cost performance close to that of the empowered NM setting. A flexible trajectory product gives
he NM the right to assign the flight at short notice to any trajectory within specified margins of spatial and/or temporal deviation
rom the Great Circle (shortest path). The larger these margins, the lower the charge for the trajectory product. Charges depend
nly on the specifics of the trajectory product, not on the actual route taken (origin–destination charging rather than sector-based
nit rates), and AUs may choose between multiple products with different margins and associated charges for a given flight.

The considered problem is the following: the booking horizon of the pre-tactical planning phase starts around 6 months prior to
he departure day and ends on departure day. At any time within this period, the AUs can submit their flight plans, in which they
equest flying from a certain origin to destination at a desired departure time. Once a flight plan gets submitted, the NM needs to
ecide on the charges to offer to the AU for every trajectory product. The trajectory products differ in the flexibility with which NM
s allowed to route a flight. Confronted with these options, the AU then chooses their preferred product and the NM is committed
o honoring the trajectory margins set with the purchased product. At the end of the booking horizon, when all flight plans have
een submitted and corresponding products have been purchased, the NM needs to decide how to route each flight (in line with the
rajectory products) to minimize overall displacement cost. Displacement cost is the cost incurred by delaying and rerouting flights
n order to avoid airspace congestion. By the end of the booking horizon, the NM needs to have collected (just) sufficient charges
n ATM services so as to recover total capacity cost incurred. We call the problem of pricing these trajectory products the ‘‘dynamic
rajectory pricing problem (DTPP)’’.

Structurally, the DTPP differs from typical dynamic pricing problems in several fundamental ways: First of all, every flight
lan submission must purchase one of the offered options — this leads to different dynamics than in the standard setting where
ustomers may leave without purchasing. In particular, this means that fairness needs to be considered. Secondly, we aim for revenue
eutrality meaning that collected charges should closely match the exogenously given capacity cost; overall revenues should neither
e substantially larger nor smaller than the fixed capacity cost. Thirdly, around 80% of flights are scheduled and therefore the
ajority of flight plan arrivals is known to occur at some point; only their precise arrival time and the AUs choice of trajectory
roducts is unknown. Finally, and most importantly, the DTPP has a hard boundary condition in the form of a routing problem that
akes an optimal solution for even moderately-sized instances intractable.

Our main methodological contributions consist of proposing a dynamic programming formulation for the dynamic trajectory
ricing problem (DTPP) incorporating fairness and revenue neutrality conditions, and showing that the boundary condition is an
P-hard optimization problem. We provide an efficient heuristic solution approach for the DTPP that can be implemented so as to
ake pricing decisions in real-time. Our numerical study provides insights to the debate on the future role of the NM, specifically

hat dynamically priced trajectory products can achieve an excellent trade-off between AU choice and cost minimization.
The paper is organized as follows: In Section 2 we review current literature on pre-tactical ATM and related fields. In Section 3,

e provide a formal description of the DTPP, and Section 4 presents an efficient method to solve the problem for realistic instances.
e evaluate dynamic pricing policies based on the proposed method in Section 5 and close with recommendations in Section 6.

. Literature review

From an operations research perspective, the field of air traffic management is generally concerned with the capacity and demand
anagement actions that optimize the flow of air traffic through the network — on a strategic, pre-tactical and operational level.
comprehensive review is given in Barnhart et al. (2012). Within this spectrum of problems, the majority of research until today

as focused on the operational demand management actions that optimize routings on the day of operations (known as air traffic
low management, see Mukherjee and Hansen (2009)). The potential of using differentiated prices to manage demand in pre-tactical
TM has been addressed in a few studies. Castelli et al. (2013) analyze the optimal sector charges the NM should set to maximize
77

heir revenues. The authors find in a small real-world test that enroute charges can be an effective instrument to influence the route
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choice of AU. Steer Davies Gleave (2015) investigate modulation of charges in European airspace and recommend route prices to
be set iteratively rather than once at a specific point in time. Finally, Xu et al. (2020) find that a stronger collaboration between
AUs and the NM in the pre-tactical phase can significantly reduce delays and detours.

Based on these insights, various researchers have investigated differentiated pricing options in pre-tactical ATM. A dis-
ount/surcharge pricing scheme for managing demand of airspace is investigated by Ranieri and Castelli (2008). The authors
ompare two options to incentivize AUs to avoid congested sectors: a surcharge to use sectors with high traffic volume or
iscounts for flights that decide to reroute. In contrast to our approach, they largely use the existing route-charging and only
ncrementally adjust prices to reflect traffic flow. Jovanović et al. (2014) combine both rerouting and delay incentives and propose
iscounts/surcharges on sectors that minimize total network cost. The pricing scheme is revenue-neutral, i.e., the revenues only
over capacity provision cost. They use bi-level programming to determine surcharges on congested sectors which in turn subsidize
iscounts placed on underutilized segments. Their model assumes that demand is known in advance and determine discounts and
urcharges accordingly (once per year), while we dynamically adjust charges to demand materializing over time. Furthermore, they
nly determine binary charges for each sector (peak and off-peak) and therefore offer much less flexibility than the differentiated
harges we propose. Bolić et al. (2017) similarly use a bi-level mixed integer programming approach to determine centralized
eak-load prices (CPLP). They model the problem as a Stackelberg game: in the first stage the charges are set such that delays
nd reroutings are minimized, and in the second stage, the AUs seek the cheapest routes with regards to total cost. Since the IP
ormulation does not scale to industry-sized problems, they propose in Castelli et al. (2015) two heuristic approaches to solve the
PLP. They find that traffic distribution (in terms of sector load) can significantly be improved through these en-route charges.

n contrast to our approach, the CPLP does not explicitly consider customer choice, nor does it anticipate demand over time. The
rices set are solely dependent on the capacity usage at the time of booking, while we develop a dynamic model, where charges
re adjusted to demand over time. Jovanović et al. (2015) propose a ‘‘Reward Predicatbility’’ model that incentivizes AU to submit
light plans earlier in the process to reduce uncertainty and improve network performance. They effectively adjust the sector charges
henever a capacity limit is reached, thereby inducing increased charges over time.

The above mentioned models differ from our approach in three important ways: (1) They determine differentiated sector charges
ather than dynamic route prices, (2) they do not estimate opportunity cost to set these charges, (3) they assume demand is
eterministic and known in advance. Thus, to the best of our knowledge, no research has explored the demand management of
TM services in the pre-tactical phase via dynamic trajectory prices, incorporating opportunity cost and stochastic demand. The

dea to strengthen the role of the NM in Europe by introducing flexible products is first discussed in Ivanov et al. (2019).
Our work is related to papers investigating optimal capacities in the strategic phase in as far as the strategic capacity budget is

n exogenous input to our model. Starita et al. (2020) provide such a capacity planning model; we use a similar formulation for the
ost estimation, but solve it heuristically in a different way since we need to make faster dynamic decisions.

Outside the context of ATM, the dynamic pricing of trajectory products in ATM shares some characteristics with the pricing of
ide-sharing that has picked up recently due to the success of mobility-on-demand providers such as Uber and Lyft. Our problem
s similar in that prices need to be determined in real-time and computing dynamic prices requires solving a hard routing problem
n the boundary condition. The main difference is that we need to consider additional pricing constraints that are specific to the
TM environment, such as fairness and revenue neutrality, while the ride-sharing problem features a more traditional revenue-
aximization scheme. A good introduction to the ride-sharing problem is given in Hosni et al. (2014). To solve the problem, Chen

t al. (2019) develop a Markov decision process formulation and an efficient algorithm that determines revenue-maximizing prices.
n a recent work, Alisoltani et al. (2021) have also investigated the potential of ride-sharing to reduce traffic congestion, which is
imilar in vein to our analysis of whether a stronger role for the NM can reduce displacements of flights in the air traffic network.
urthermore, the problem of estimating opportunity cost in the presence of a hard routing problem is investigated in dynamic tolling
or traffic networks (see Rambha and Boyles (2016)), as well as dynamic pricing in attended home delivery (AHD, see Yang and
trauss (2017) and Yang et al. (2016)). The latter work has inspired our approach in that we also design a ‘‘foresight policy’’ that
ttempts to anticipate future demand when estimating opportunity cost via insertion costs. The term insertion cost refers to the
rocess of estimating opportunity cost by ‘‘inserting’’ a product (which is to be priced) into various future demand scenarios.

. Problem statement

In this section, we present the mathematical modeling framework of the dynamic trajectory pricing problem (DTPP) in pre-tactical
TM. The formulation is kept sufficiently general to accommodate the three settings that we seek to investigate, namely either full

lexibility to assign flights by the NM, full choice of trajectories by the AUs, or a mix in the form of AU choice between flexible
rajectory products.

.1. Problem definition and notation

In all settings that we investigate, the AU requests the ATM service for a certain flight and the NM sets the service charge;
owever, the options for the AU vary in each setting. We always plan for a single day of departure. The pre-tactical ATM process
tarts at a fixed number of days prior to the departure day and ends on departure day. In particular, we consider a booking horizon
rom 𝑡 = 1,… , 𝑇 , where 𝑇 is the cut-off time after which no bookings are permitted, and any period 𝑡 represents a discrete time
nterval. The length of each interval may vary for each 𝑡 but is chosen sufficiently small so that at most one request arrives per time
78

eriod. Within the booking horizon, any AU can submit a flight plan for a flight 𝑓 ∈  , in which they request flying from some
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origin to some destination at a certain departure time. To incorporate non-scheduled flights, for which no such information exists
in advance, set  includes all potential combinations of origins, destinations and departure time. This can be achieved by pooling
istoric origin–destination pairs and by discretizing departure time into small time intervals (e.g., 5 min). At any time 𝑡, we denote
he set of (scheduled) flights for which flight plans have already been submitted by 𝐹𝑡 (𝐹𝐺

𝑡 ), and their complements by 𝐹̄𝑡 ( ̄𝐹𝐺
𝑡 ).

ote that 𝐹𝐺
𝑡 ⊆ 𝐹𝑡 and 𝐹𝑡 ∪ 𝐹̄𝑡 =  . Booking requests for non-scheduled flights arrive according to a Poisson process with 𝜆𝑁 , while

rrivals for scheduled flights are modeled by a pure ‘‘death process’’ with 𝜆𝐺 (see Section 3.1.3).
We introduce new trajectory product types that the AU can book, which determine how flexibly the NM can decide to route the

light (see Section 3.1.1). Once the flight plan is submitted for a certain flight 𝑓 and day, the NM needs to decide on the price vector
𝑓 , with prices for each product type 𝑧 ∈ 𝑍, to charge to the AU. Confronted with prices 𝑝 𝑓 = (𝑝𝑓𝑧 )𝑧∈𝑍 , the AU chooses product
ype 𝑧 with probability 𝑃𝑧(𝑝 𝑓 ). Based on the purchased product types, the NM then needs to decide through which sectors to route
ach flight to keep network cost low. Section 3.1.2 describes in detail the modeling of the DTPP as a Markov decision process.

.1.1. Definition of products
As mentioned above, the product type determines the flexibility conditions under which a flight can be routed on the day of

peration. These are relevant in the setting in which the AU chooses between different trajectory products. We define a route
s the spatio-temporal trajectory of a flight. Let the day of operations be divided uniformly into discrete operating periods 𝑢 in
= {1,… , 𝑈𝑚𝑎𝑥}. Any flight 𝑓 can then be routed through routes 𝑟 ∈ 𝑅𝑓 , where each 𝑟 is a sequence of elementary sector- and

ime-combinations, and 𝑅𝑓 represents all possible routes for flight 𝑓 . (Bolić et al., 2017 estimate that a typical flight in Europe only
hooses among 4 clearly distinct routes, so that we can assume a finite route set.) Any route 𝑟 ∈ 𝑅𝑓 comes with displacement cost
𝑓
𝑟 which reflect the additional fuel and delay costs generated by routing a flight through 𝑟, relative to the shortest distance and no

delay.
With this notation, we define 𝑛 product types in set 𝑍 = {1,… , 𝑛}. If an AU buys product type 𝑧 ∈ 𝑍 for flight 𝑓 , the NM

commits to routing the flight through 𝑅𝑓
𝑧 ⊆ 𝑅𝑓 . The flexibility with which flights can be routed increases with 𝑧 so that we have

𝑅𝑓
1 ⊂ ⋯ ⊂ 𝑅𝑓

𝑛 = 𝑅𝑓 for each flight 𝑓 , where 𝑅𝑓
1 are those routes that are operationally close to the flight’s Great Circle Distance

(GCD). The GCD describes the shortest distance between any two points on the surface of a sphere (i.e., the earth), and in this case
represents the shortest possible route between any two city pairs. Since the price of a product depends on product type 𝑧 and flight
𝑓 for which it is purchased, we define a product 𝑗 as any combination (𝑓, 𝑧).

3.1.2. State space, action space and transition function
In our decision model, the NM uses the latest booking information (state space) to price the trajectory products (action space),

and then observes the response by the AU (transition function) to conclude the booking request.

State space The state space needs to contain all information that we require to take an action at booking time 𝑡. The state of the
TPP is fully described by 𝑋𝑡 ∈ 𝜒 ⊂ N| |×𝑛+1, which contains in rows 1,… , | | the product type that has been purchased until 𝑡 (if

any) by flight 𝑓 ∈  , and the prices 𝑝𝑓 = (𝑝𝑓𝑧 )𝑧∈𝑍 that were offered for each product type (of which there are 𝑛). In particular, the
𝑘th row 𝑋𝑡,𝑘 for 𝑘 = 1,… , | | is defined as:

𝑋𝑡,𝑘 =

{

0 if flight plan has not been submitted
𝑧, (𝑝𝑓𝑧 )𝑧∈𝑍 if product type 𝑧 was purchased by flight 𝑘 at price offer 𝑝𝑓 .

Note that | | = 𝑛𝐺+𝑛𝑁 , where 𝑛𝐺 and 𝑛𝑁 are the number of all scheduled and non-scheduled flights, respectively. Even if we do
not know in advance the non-scheduled flights that will arrive to the booking process, parameter 𝑛𝑁 is known since it represents all
possible combinations of origin, destination and departure time. It is easy to see that the size of state space 𝑋 grows quickly with
the number of product types 𝑛. However, this does not cause problems since our solution approach in Section 4 does not require
iterating through all states 𝑋; instead we only require the state space to describe the DTPP.

Action space If we are in state 𝑋𝑡 and a flight plan is submitted for flight 𝑓 , we need to decide on prices to offer to the AU for
every product type 𝑧 ∈ 𝑍. According to common business practice, a limited number of discrete price points is suitable. Therefore,
we develop a vector with discrete, relative price points that can be applied to all flights. For that purpose, we define a benchmark
price ̄𝑟𝑒𝑣𝑓 for every origin–destination pair reflecting the revenues needed to cover capacity provision cost. To compute benchmark
prices for each flight, we proceed in three steps: First, we use historic flight patterns to determine the average share of flights for
each combination of origin–destination pair and aircraft type (flying on these pairs). Second, we define a relative cost index for each
combination of origin–destination pair and aircraft type. This cost index shows the relative cost generated by one such combination
over another, and reflects that longer flights (and larger aircraft) cause higher cost than shorter flights (and smaller aircraft). Lastly,
we split the total capacity provision cost among all combinations of origin–destination pair and aircraft type according to their
relative share and cost index. Given parameters ̄𝑟𝑒𝑣𝑓 , each price point 𝑟𝑒𝑣𝑓𝑧 can then be represented as the percentage 𝑝𝑓𝑧 of the
flight’s benchmark price that is charged to the AU, i.e.,

𝑟𝑒𝑣𝑓𝑧 = 𝑝𝑓𝑧 ̄𝑟𝑒𝑣𝑓 , 𝑓 ∈  , 𝑧 ∈ 𝑍, 𝑡 = 1,… , 𝑇 . (1)

With this notation, we can replace the action space of pricing vector (𝑟𝑒𝑣𝑓𝑧 )𝑧∈𝑍 with the action space of 𝑝 𝑓 = (𝑝𝑓𝑧 )𝑧∈𝑍 for each flight,
where 𝑝𝑓𝑧 is chosen from a finite set of scaling factors 𝑃𝑟 = {𝑝𝑖 ∶ 𝑖 = 1,… , 𝐼}. For instance, a price 𝑝𝑓𝑧 of 1.1 means that we are
charging 10% more than the benchmark price ̄𝑟𝑒𝑣𝑓 . Since we are pricing up to 𝑛 product types for each flight, our action space has
cardinality 𝐼𝑛 at each time. We always need to offer at least one product type because we cannot deny the service offering. In fact,
79

we always offer all product types in order to maximize the choice for AUs.
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Transition function Having decided on pricing offer 𝑝 𝑓 at time 𝑡, the transition from state 𝑋𝑡 to 𝑋𝑡+1 depends on the customer choice
outcome as well as arrival rates of upcoming flights. The product choice by the AU is governed by a choice model; it defines the
probability 𝑃𝑧(𝑝 𝑓 ) that an AU purchases product type 𝑧 if confronted with pricing offer 𝑝 𝑓 . Note that, in contrast to traditional
evenue management problems, the AU has to choose one of the products offered in the booking process (booking obligation), i.e.,

∑

𝑧∈𝑍
𝑃𝑧(𝑝 𝑓 ) = 1, ∀𝑓 ∈  .

his condition is particular to the DTPP and requires us to impose further constraints: To ensure that the pricing mechanism does
ot abuse the booking obligation by always setting maximum prices, we implement a revenue neutrality and fairness requirement
see Section 3.2.1).

.1.3 Arrival process
In contrast to traditional revenue management problems, we know almost certainly that a large share of customers (i.e., scheduled

lights) will eventually ‘‘arrive’’ to the booking process; we just do not know when. To model the arrival process, we first require
hat once a flight (scheduled or non-scheduled) has entered the booking process, it does not arrive again. Let 𝜆𝑓𝑡 (𝐹𝑡) be the arrival
robability of a particular flight 𝑓 at 𝑡, given that flights 𝐹𝑡 have already arrived so far. We have:

𝜆𝑓𝑡′ (𝐹𝑡) = 0, ∀𝑓 ∈ 𝐹𝑡, 𝑡
′ = 𝑡,… , 𝑇 .

n the following, we therefore focus on arrival probabilities of remaining flights 𝐹̄𝑡, where we differentiate between scheduled and
on-scheduled flights. For non-scheduled flights we can assume that AUs arrive according to a Poisson process (with arrival rate 𝜆𝑁 ),
ince we know the average time between arrivals based on average expected flights, and arrivals are independent of one another
i.e., one arrival does not affect the probability of the next). The arrival rate 𝜆𝑁 governs the flight arrival event itself; the flight
pecifics (origin, destination and departure time) are uniformly sampled from a large finite set. For scheduled flights, the arrival
rocess is more complex because the arrival rate at 𝑡 depends on the remaining population ̄𝐹𝐺

𝑡 . Since we know that most (if not all)
cheduled flights will enter the booking process at some time until 𝑇 , we expect a higher arrival rate from 𝑡 to 𝑇 if few scheduled
lights have arrived until 𝑡. In particular, we require:

𝑇
∑

𝑡′=𝑡
𝜆𝑓𝑡′ (𝐹𝑡) ≈ 1, ∀𝑓 ∈ 𝐹𝐺

𝑡 .

In Parlar et al. (2018), the authors discuss a similar setting when modeling the arrival of customers to exclusive-use airline
heck-in counters, where customers can only use certain counters to check in for their flight. As in our setting, the authors expect
ost (if not all) passengers of a flight to arrive to check-in before the counter closes. They model the arrival as a pure ‘‘death
rocess’’, where the time until arrival of customers is exponentially distributed with parameter 𝜆𝐺𝑡 . We assume that the arrival time
istribution in the pre-tactical ATM process can also be reasonably approximated as exponential since the AUs are incentivized
o submit their flight plans early in the process to secure attractive trajectory options. Parameter 𝜆𝐺𝑡 can be interpreted as the
robability that a certain scheduled flight arrives within the next time period after 𝑡.

In Parlar et al. (2018), the authors estimate 𝜆𝐺𝑡 based on historic arrival patterns. Let 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑚 be the points in time
i.e., epochs) during which individual arrivals of scheduled flights occured in one such historic arrival pattern, and let 𝑞(𝑡) specify
he last epoch before time 𝑡. Also, let 𝑥0, 𝑥1,… , 𝑥𝑚 be the observed number of scheduled flights that have not yet arrived to the
ooking process at the start of each epoch, where 𝑥𝑚 > 0 in case of cancellations. Then the cumulative time until arrival can be
xpressed as 𝐷𝑡 =

∑𝑚−1
𝑖=𝑞(𝑡) 𝑥𝑖(𝜏𝑖+1 − 𝜏𝑖) + 𝑥𝑚(𝑇 − 𝜏𝑚). Specifically, 𝐷𝑡 is the expected number of time intervals that we need to wait

ntil the arrival of any flight 𝑓 ∈ 𝐹𝐺
𝑡 ; it will be estimated as an average over multiple historic arrival patterns. The probability of

rrival at any time 𝑡 can then be estimated by 𝜆𝐺𝑡 = 1∕𝐷𝑡, which is updated dynamically after every arrival. In summary, we can
stimate the arrival probability of any scheduled or non-scheduled flight as:

𝜆𝑓𝑡 (𝐹̄𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜆𝐺𝑡 = 1
𝐷𝑡

for all 𝑓 ∈ 𝐹𝐺
𝑡

𝜆𝑁 for all 𝑓 ∈ 𝐹𝑡∖𝐹𝐺
𝑡

0 for all 𝑓 ∈ 𝐹𝑡.

.2 Dynamic programming formulation

.2.1 Value function
Our goal is to determine a policy that determines price parameters 𝑝 𝑓 (𝑋𝑡) to offer for any flight 𝑓 , given existing bookings 𝑋𝑡 at

ime 𝑡, such that the AU is steered towards a product type with lowest expected displacement cost (including delay and rerouting
ost). Henceforth we will omit subscript 𝑡 in 𝑋𝑡 since the time will follow immediately from the dynamic program recursion. The
olicy needs to consider at any time 𝑡 the set 𝐹̄𝑡 of potential flights for which no trajectory product has been purchased yet. Let
𝑡(𝑋) be the value of being at state 𝑋 at time 𝑡, meaning the minimum expected cost we need to bear from 𝑡 until cut-off time 𝑇 +1,
iven product purchases in 𝑋.
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The value function is then defined by:

𝑉𝑡(𝑋) =
∑

𝑓∈𝐹𝑡

𝜆𝑓𝑡 (𝐹𝑡) min
𝑝 𝑓

{

∑

𝑧∈𝑍
𝑃𝑧(𝑝 𝑓 )𝑉𝑡+1(𝑋 ∪ (𝑓, 𝑧, 𝑝 𝑓 ))

}

+
⎡

⎢

⎢

⎣

1 −
∑

𝑓∈𝐹𝑡

𝜆𝑓𝑡 (𝐹𝑡)
⎤

⎥

⎥

⎦

𝑉𝑡+1(𝑋)

=
∑

𝑓∈𝐹𝑡

𝜆𝑓𝑡 (𝐹𝑡) min
𝑝 𝑓

{

∑

𝑧∈𝑍
𝑃𝑧(𝑝 𝑓 )

[

𝑉𝑡+1(𝑋 ∪ (𝑓, 𝑧, 𝑝 𝑓 )) − 𝑉𝑡+1(𝑋)
]

}

+ 𝑉𝑡+1(𝑋), 𝑋 ∈ 𝜒.

(2)

where 𝑉𝑡+1(𝑋 ∪ (𝑓, 𝑧, 𝑝 𝑓 )) − 𝑉𝑡+1(𝑋) =∶ 𝛥(𝑗,𝑝)𝑉𝑡+1(𝑋) is the opportunity cost of selling product 𝑗 = (𝑓, 𝑧) with price set 𝑝 𝑓 at state 𝑋𝑡.
At any time 𝑡, a request for flight 𝑓 arrives with probability 𝜆𝑓𝑡 (𝐹𝑡) and the AU decides to purchase product type 𝑧 given pricing offer
𝑓 with probability 𝑃𝑧(𝑝 𝑓 ). In that case we incur the expected cost of state 𝑋 ∪ (𝑓, 𝑧, 𝑝 𝑓 ) we are moving to. If no request arrives at
ime 𝑡, we remain in state 𝑋 for 𝑡 + 1.

oundary condition At the end of the booking horizon we need to determine the minimal displacement cost 𝑉𝑇+1(𝑋). For this, we
enote by 𝐷(𝑋,𝑊 ,𝐻) an oracle that provides the minimum displacement cost for routing flights via trajectory options defined by
tate 𝑋, given capacity budget vector 𝐻 and capacity uncertainty 𝑊 . Capacity budget 𝐻 = (𝐻𝑎)𝑎∈𝐴 specifies the total sector hours
hat an airspace 𝑎 can use, and is set at the strategic phase. Parameter 𝑊 governs the remaining uncertainty in the problem setting.
ince traffic uncertainty is already described by the materialization of 𝑋𝑇+1, 𝑊 models the uncertainty in capacity provision (due
o employee absence or adverse weather). In particular, 𝑊 represents the actual sector capacities at 𝑇 +1 which are modeled based
n historic rates (see Section 4.1).

As mentioned before, to control the pricing behavior, there are two further soft considerations that we need to include in the
oundary condition: Firstly, the total revenues generated by the pricing policy need to be in line with total capacity provision
ost; that is, revenues need to be large enough to recover these cost, and can only exceed them by a certain margin (revenue
eutrality requirement). Secondly, the range of prices offered to an AU for different product types should not be excessively large; in
articular, the range should reflect the difference in opportunity cost between the product types (fairness requirement). While revenue
eutrality regulates the total sum of charges, the fairness requirement regulates the range of charges among product types. Let 𝜃𝑅𝑁
nd 𝜃𝐹𝑅 be the penalties for violating the revenue neutrality and fairness requirement, respectively. Furthermore, we denote by

𝑝̂𝑓 =
∑

𝑧 𝑃𝑧(𝑝 𝑓 )𝑝 𝑓
𝑧 the expected price paid for flight 𝑓 and by 𝑉 𝑎𝑟(⋅) the variance of any set. Then the boundary condition including

oft considerations is given by:

𝑉𝑇+1(𝑋) = E𝑋,𝑊 [𝐷(𝑋,𝑊 ,𝐻)]+𝜃𝑅𝑁 𝜖𝑅𝑁 (𝑋) + 𝜃𝐹𝑅𝜖𝐹𝑅(𝑋), 𝑋 ∈ 𝜒, (3a)

where 𝜖𝑅𝑁 (𝑋) ∶=
∑

𝑓∈𝐹𝑇

|1 − 𝑝̂𝑓 |, (3b)

𝜖𝐹𝑅(𝑋) ∶=
∑

𝑓∈𝐹𝑇

𝑉 𝑎𝑟(𝑝𝑓 ). (3c)

Definition (3b) sets 𝜖𝑅𝑁 as the absolute deviation between the average collected price and cost-neutral price of 1. Multiplying
oth parts of the subtraction with benchmark prices 𝑟𝑒𝑣𝑓 for each flight would result in the deviation between capacity budget cost
nd collected revenues, which is what we require to ensure revenue neutrality. Since we do not know in advance how many flights
ill arrive, it is possible that total revenues exceed capacity cost if unexpectedly many flights arrive, or fall short of capacity cost if
nexpectedly few flights arrive. However, across multiple operating days, these deviations will cancel out so that we ensure revenue
eutrality over time. Definition (3c) defines 𝜖𝐹𝑅 as the variance among prices offered for 𝑓 . This way we prevent the optimization
rom setting excessively large price differences between product types and thereby implicitly imposing a product on the AU. We
ill only charge largely different prices if the difference in opportunity cost between products outweighs the penalty associated
ith the fairness condition. Components 𝜖𝑅𝑁 and 𝜖𝐹𝑅 are then used with penalties 𝜃 in boundary condition (3a) to model these soft

onsiderations. The penalty terms should be set according to the application at hand, and reflect the choice model 𝑃𝑧(𝑝𝑓 ). Parameter
𝐹𝑅 should be set a priori and chosen such that the minimum price variance required to impose any product on the AU (based on the
hoice model) induces a penalty larger than the maximum benefit from such imposition. In contrast, a breach of revenue neutrality is
ard to quantify so that 𝜃𝑅𝑁 is best defined after initial simulations. As long as a reasonable number of relative prices exist (in 𝑃𝑟),
nsuring revenue neutrality via (3b) will not impact the objective function value. Even if definitions (3b) and (3c) are constructively
imilar, they cannot be reduced to one condition because (3b) controls the average price while (3c) controls its variation.

.2.2 Joint sector-opening and routing optimization
Computing 𝐷(𝑋,𝑊 ,𝐻) exactly requires solving a problem that determines (a) the optimal trajectories for each flight and (b)

he sectors to open at each operating time 𝑢 (the so-called sector-opening scheme), given bookings in 𝑋, sector capacities 𝑊 and
apacity budget 𝐻 , such that total displacement cost is minimized. In evaluating 𝐷(𝑋,𝑊 ,𝐻), we assume the expected displacement
ost 𝑑𝑓𝑟 for routing 𝑓 through 𝑟 to be given.

The following model is based on Starita et al. (2020). Let 𝑥𝑓𝑟 be the decision whether 𝑓 is routed through 𝑟, and let 𝑦𝑎𝑐𝑢 be the
ecision whether airspace 𝑎 operates in configuration 𝑐 ∈ 𝐶𝑎 at operating time 𝑢. A configuration 𝑐 ∈ 𝐶𝑎 specifies a partitioning of
irspace 𝑎 into (elementary or collapsed) sectors 𝑙, which in turn are stored in 𝐿𝑐 . The set of elementary sectors 𝑒 that form any
ector 𝑙 are denoted by 𝐸𝑙. Operating time intervals are chosen sufficiently large (e.g., 1 h) so that configurations can be changed
etween intervals. Parameter ℎ̄ represents the sector-time units consumed if airspace 𝑎 operates in 𝑐. The indicator 𝑏 equals 1
81
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b

if flight 𝑓 on route 𝑟 uses sector 𝑒 at time 𝑢, and 0 otherwise. For every 𝑓 ∈ 𝐹𝑡 we define 𝑧 as the product type that was purchased
y the AU, so that 𝑅𝑓

𝑧 are the routing options for flight 𝑓 . Finally, sector capacity 𝑙 specifies how many flights can enter sector 𝑙
within one time interval, based on possibly reduced capacities 𝑊 . The integrated routing and sector opening problem (IRSOP) is
given as:

𝐈𝐑𝐒𝐎𝐏 ∶𝐷(𝑋𝑡,𝑊 ,𝐻) = min
𝑥,𝑦

∑

𝑓∈𝐹𝑡

∑

𝑟∈𝑅𝑓
𝑧

𝑑𝑓𝑟 𝑥
𝑓
𝑟 (4a)

s.t.
∑

𝑢

∑

𝑐∈𝐶𝑎
ℎ̄𝑎𝑐𝑦𝑎𝑐𝑢 ≤ 𝐻𝑎 𝑎 ∈ 𝐴 (4b)

∑

𝑓∈𝐹𝑡

∑

𝑟∈𝑅𝑓
𝑧

∑

𝑒∈𝐸𝑝
𝑏𝑓𝑟𝑒𝑢𝑥

𝑓
𝑟 𝑦𝑎𝑐𝑢 ≤ 𝑙 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑎, 𝑙 ∈ 𝐿𝑐 , 𝑢 ∈ 𝑈 (4c)

∑

𝑐∈𝐶𝑎
𝑦𝑎𝑐𝑢 = 1 𝑎 ∈ 𝐴, 𝑢 ∈ 𝑈 (4d)

∑

𝑟∈𝑅𝑓
𝑧

𝑥𝑓𝑟 = 1 𝑓 ∈ 𝐹 (4e)

𝑥𝑓𝑟 ∈ {0, 1} 𝑓 ∈ 𝐹 , 𝑟 ∈ 𝑅𝑓
𝑧 (4f)

𝑦𝑎𝑐𝑢 ∈ {0, 1} 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑎, 𝑢 ∈ 𝑈. (4g)

The objective function minimizes total flight displacement cost over all flights and routes. Constraint (4b) defines the feasible
configurations based on the capacity budget 𝐻𝑎 for each airspace. Constraint (4c) ensures that the sector capacity is not exceeded:
If we operate under configuration 𝑐 at 𝑢, we restrict the capacity of any sector in 𝐿𝑐 to 𝑙; otherwise the left-hand side reduces to
0 and the constraint holds. Constraint (4d) ensures that each airspace operates under one configuration at any time, (4e) ensures
that exactly one route is assigned to each flight, and (4f)–(4g) model the binary condition for our decision variables.

3.2.3 Real-time control policy
If the dynamic program for the value function is solved, it can be used as input for the online decision policy. As soon as an AU

submits a request for a flight 𝑓 , we need to decide which prices 𝑝 𝑓 (𝑋) to offer. We see from the dynamic program in (2) that this
online decision can be made as follows:

𝑝 𝑓 (𝑋) = arg min
𝑝 𝑓

∑

𝑧∈𝑍
𝑃𝑧(𝑝 𝑓 )𝛥(𝑗,𝑝)𝑉𝑡+1(𝑋). (5)

We set prices 𝑝 𝑓
𝑡 for flight 𝑓 such that expected opportunity cost 𝛥(𝑗,𝑝)𝑉𝑡+1(𝑋) is minimized. The pricing policy is dynamic in that

we adjust the price vector 𝑝 𝑓 based on incoming bookings over time. However, note that the real-time control policy in (5) does
not depend on time 𝑡. That is, we do not explicitly include a timing incentive that would, for instance, reward earlier bookings.

Determining optimal prices in (5), given known value function 𝑉𝑡(𝑋), represents an assortment optimization problem whose
solution technique depends on the customer choice model describing 𝑃𝑧(𝑝 𝑓 ). Note that due to the assumption of finite price points,
we need to choose one price vector from a finite set of possible vectors which are defined by our action space with cardinality
𝐼𝑛. In our experiments, the number of price points 𝐼 and product types 𝑛 is small enough so that we can in fact fully enumerate
the price vectors and their respective objective value in (5). If full enumeration is not possible in real-time, one of the assortment
optimization techniques discussed in Strauss et al. (2018) can be applied. By exploiting the structure of the underlying choice model,
these techniques allow finding optimal solutions in polynomial time. For instance, Dong et al. (2009) prove the concavity of choice
probabilities under the multinomial logit (MNL) model and derive a quick analytical solution.

In summary, the key to making optimal decisions is to quantify the opportunity cost, which in turn depends on the value function.
Since determining the value function exactly is intractable for realistic problem sizes, we need to find high quality approximations of
the opportunity cost. This is the subject of the following section, where we discuss approaches for estimate opportunity cost offline
so that they can be used in the real-time decision policy.

4 Approximation of opportunity cost

As explained above, we require an approximation of the opportunity cost as an input to the pricing policy. The opportunity
cost associated with selling product 𝑗 = (𝑓, 𝑧) under price offer set 𝑝𝑓 represents all future cost implications from this transaction.
In particular, it includes displacement and penalty cost implications. Let 𝑋𝑆

𝑇+1 and 𝑊 𝑆 represent realizations of the respective
uncertainties for a scenario 𝑆 ∈ (𝑋). In particular, a scenario describes a forecast of flight arrivals and actual capacity for departure
day. Here, (𝑋𝑡) denotes the population of scenarios for 𝑋𝑡 ∈ 𝜒 ; it depends on 𝑋𝑡 because bookings that have already been made
will always form part of 𝑋𝑆

𝑇+1. Note that 𝑋𝑇+1 represents the realized state at time 𝑇 +1 with known bookings, while 𝑋𝑆
𝑇+1 represents

a forecast of 𝑋𝑇+1 at any time 𝑡 ≤ 𝑇 under scenario 𝑆 ∈ (𝑋𝑡). Furthermore, let 𝜋𝑆 denote the optimal pricing policy determined
in hindsight given scenario 𝑆, and 𝑋𝜋𝑆 ,𝑆

𝑇+1 the state under scenario 𝑆 given that policy 𝜋𝑆 is executed. To compute opportunity cost,
we use the following value function approximation:

𝑉𝑡(𝑋𝑡) ≈ 𝑉𝑡(𝑋𝑡) ∶=
∑

min
𝜋𝑆

𝑉𝑇+1(𝑋
𝜋𝑆 ,𝑆
𝑇+1 )

|(𝑋 )|
. (6)
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That means, we approximate the value function at 𝑡 with the expected value at 𝑇 +1, evaluated over 𝑆 ∈ (𝑋𝑡), given that policy 𝜋𝑆

is executed. This approximation represents an asymptotically lower bound on 𝑉𝑡(𝑋𝑡) for a sufficiently large set of sample scenarios.

roposition 1. Let 𝜋̂ denote an arbitrary pricing policy. Then the following holds:

lim
||→∞

∑

𝑆∈(𝑋𝑡)
min
𝜋𝑆

𝑉𝑇+1(𝑋
𝜋𝑆 ,𝑆
𝑇+1 )

|(𝑋𝑡)|
≤ 𝑉𝑡(𝑋𝑡) ≤ lim

||→∞

∑

𝑆∈(𝑋𝑡)

𝑉𝑇+1(𝑋
𝜋̂,𝑆
𝑇+1)

|(𝑋𝑡)|
.

roof. In general, value 𝑉𝑡(𝑋𝑡) can be represented as the expected value 𝑉𝑇+1 at cut-off time resulting from optimal pricing policy
𝜋, given the uncertainties 𝑋𝑇+1 and 𝑊 (reflected by scenarios 𝑆). The lower bound is then deducted as below:

𝑉𝑡(𝑋) = min
𝜋

E𝑆 [𝑉𝑇+1(𝑋
𝜋,𝑆
𝑇+1)] =

𝑆𝐴𝐴
min
𝜋

lim
||→∞

∑

𝑆∈(𝑋𝑡)

𝑉𝑇+1(𝑋
𝜋,𝑆
𝑇+1)

|(𝑋𝑡)|
≥ lim

||→∞

∑

𝑆∈(𝑋𝑡)
min
𝜋𝑆

𝑉𝑇+1(𝑋
𝜋𝑆 ,𝑆
𝑇+1 )

|(𝑋𝑡)|
.

e use sample average approximation (SAA) to approximate the expectation over 𝑆 with the average across these scenarios. The
emaining inequality is given because any policy 𝜋𝑆 determined in hindsight based on 𝑆 will deliver a value 𝑉𝑇+1(𝑋

𝜋𝑆 ,𝑆
𝑇+1 ) at least

s low as under policy 𝜋. In contrast, to prove the upper bound we use the fact that 𝑉𝑇+1(𝑋
𝜋,𝑆
𝑇+1) is at least as low as the value under

fixed policy 𝜋̂. Using SAA again shows the proposed relation:

𝑉𝑡(𝑋𝑡) = min
𝜋

E𝑆 [𝑉𝑇+1(𝑋
𝜋,𝑆
𝑇+1)] ≤ E𝑆 [𝑉𝑇+1(𝑋

𝜋̂,𝑆
𝑇+1)] =

𝑆𝐴𝐴
lim

||→∞

∑

𝑆∈(𝑋𝑡)

𝑉𝑇+1(𝑋
𝜋̂,𝑆
𝑇+1)

|(𝑋𝑡)|
. □

Using the approximation in (6), we obtain for the opportunity cost:

𝛥(𝑗,𝑝)𝑉𝑡+1(𝑋𝑡) ≈ 𝛥(𝑗,𝑝)𝑉𝑡+1(𝑋𝑡) =
∑

𝑆∈(𝑋𝑡)

𝛥𝑗𝐷(𝑋𝑆
𝑇+1,𝑊

𝑆 ,𝐻)
|(𝑋𝑡)|

+ 𝜃𝑅𝑁𝛥𝑝𝜖
𝑅𝑁 + 𝜃𝐹𝑅𝛥𝑝𝜖

𝐹𝑅. (7)

To obtain (7) we first replace 𝑉𝑇+1(𝑋
𝜋𝑆 ,𝑆
𝑇+1 ) in (6) with the respective displacement and penalty cost considerations in 𝑉𝑇+1 and

hen determine opportunity cost by computing the change in displacement and penalty cost with regards to product 𝑗 and price
. The change in displacement cost 𝛥𝑗𝐷(𝑋𝑆

𝑇+1,𝑊
𝑆 ,𝐻) is computed as the cost of ‘‘inserting’’ product 𝑗 = (𝑓, 𝑧) to final bookings

𝑋𝑆
𝑇+1 (under scenario 𝑆), which is why we refer to it as the insertion cost of product 𝑗. The changes in penalty cost 𝜃𝑅𝑁𝛥𝑝𝜖𝑅𝑁

nd 𝜃𝐹𝑅𝛥𝑝𝜖𝐹𝑅 only depend on price 𝑝 (since information on product 𝑗 or scenario 𝑆 do not influence the revenue neutrality or
airness of state 𝑋𝑇+1), so we do not need to evaluate these costs over 𝑆 ∈ (𝑋). The quality of the approximation in (7) depends
n our ability to adequately model the uncertainty involved in our problem setting between 𝑡+1 and 𝑇 +1. Therefore, we determine
(𝑗,𝑝)𝑉𝑡+1(𝑋) in three steps, which are detailed in the following subsections:

1. Use latest information at time 𝑡 to generate samples 𝑆 = (𝑋𝑆
𝑇+1,𝑊

𝑆 ), see Section 4.1;
2. Determine routing of flights with lowest cost 𝐷(𝑋𝑆

𝑇+1,𝑊
𝑆 ,𝐻) for each sample, see Section 4.2;

3. Determine cost 𝛥𝑗𝐷(𝑋𝑆
𝑇+1,𝑊

𝑆 ,𝐻) as well as penalty parameters 𝛥𝑝𝜖𝑅𝑁 and 𝛥𝑝𝜖𝐹𝑅 for adding product 𝑗 at price set 𝑝𝑓 to the
routing of any sample (𝑋𝑆

𝑇+1,𝑊
𝑆 ), see Section 4.3.

.1 Sampling strategy to model uncertainty

The approach is somewhat similar to the foresight heuristic proposed by Yang et al. (2016) for solving a routing problem in
ttended home delivery. They used a set of final historic routes to estimate insertion costs. In contrast, in our application we already
now more about future demand, specifically scheduled traffic. Hence, we always use the latest information of the current booking
rocess to evaluate the expectation. The information we have on hand at booking time 𝑡 is two-fold: The flights that have already
erminated the booking process along with the products that they have purchased (𝑋𝑡), and the set of scheduled flights that will
till enter the process until cut-off time (𝐹𝐺

𝑡 ). Therefore, in order to compute expected displacement cost 𝐷(𝑋𝑇+1,𝑊 ,𝐻), we need
o address two remaining uncertainties:

• Non-scheduled flights that arrive until cut-off, as well as products that upcoming scheduled and non-scheduled flights purchase
(𝑋𝑇+1);

• Actual capacity per sector-time unit on departure day (𝑊 ).

As discussed, we create sample scenarios 𝑆 = (𝑋𝑆
𝑇+1,𝑊

𝑆 ) that differ with regard to the two inputs mentioned above. For 𝑋𝑆
𝑇+1,

e randomly sample non-scheduled flights from a finite set of potential flights, whose origins, destinations and departure times
eflect the real population of flights. The number of flights we sample is drawn from a normal distribution (given the large number
f flights, we can use a continuous domain) with mean equal to 𝜇𝐹 − |𝐹𝑡| − |𝐹𝐺

𝑡 |, where 𝜇𝐹 is the average expected number of
lights on operating day. Furthermore, we assume as part of our policy that all upcoming flights purchase the most flexible product
ype. This way, we can choose among all 𝑟 ∈ 𝑅𝑓 , letting our model determine the optimal route. The assumption is reasonable
ecause we expect the pricing policy to let AUs choose less flexible products only if this does not impact network performance.
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Initial experiments confirm that more selective forecasts of product types (e.g., stratified sampling or flight-based inferences) do not
improve results. Finally, the realized sector capacities 𝑊 𝑆 can be modeled in various ways as long as the resulting capacity levels
eflect historic fluctuations in the airspace. In our case, we choose at random one elementary sector in each airspace, and reduce the
apacity of this sector (and all collapsed sectors containing it) in line with historic rates. In practice, these rates can be determined
ased on past ATM regulations which are imposed on airspaces and reduce its nominal sector capacities; they should be observed
ver a period of over one year to allow for a fair representation of extreme events (such as strikes or abnormal weather conditions).

.2 Metaheuristic approach for routing problem

In a first step, we need to determine the routing with lowest displacement cost 𝐷(𝑋𝑆
𝑇+1,𝑊

𝑆 ,𝐻) in (4a) for each sample scenario
𝑋𝑆

𝑇+1,𝑊
𝑆 ), which requires solving the IRSOP. However, this problem is -hard, as shown below.

heorem 1. The IRSOP described by (4a)–(4f) is -hard.

roof. We show that by fixing certain variables in the integrated routing and sector opening problem, the problem represents an
nstance of the multi-choice multidimensional knapsack problem (MMKP), which is known to be -hard (Martello, 1990). We choose

at random a configuration set 𝐶 ′ = {𝑐′𝑎𝑢 ∈ 𝐶𝑎 ∶ 𝑎 ∈ 𝐴, 𝑢 ∈ 𝑈} with configurations for each airspace and operating time such that
condition (4b) holds. (If no such configuration set exists, the problem is infeasible.) We set 𝑦𝑎𝑐′𝑢 = 1 for all configurations 𝑐′ ∈ 𝐶 ′,
and 𝑦𝑎𝑐𝑢 = 0 otherwise. With this variable fixing, constraints (4b),(4d)–(4g) become redundant, and the remaining problem changes
to:

𝐷(𝑋𝑡,𝑊 ,𝐻) = min
𝑥

∑

𝑓∈𝐹𝑡

∑

𝑟∈𝑅𝑓
𝑧

𝑑𝑓𝑟 𝑥
𝑓
𝑟

s.t.
∑

𝑓∈𝐹𝑡

∑

𝑟∈𝑅𝑓
𝑧

∑

𝑒∈𝐸𝑙

𝑏𝑓𝑟𝑒𝑢𝑥
𝑓
𝑟 ≤ 𝑙 𝑐′ ∈ 𝐶 ′, 𝑙 ∈ 𝐿𝑐′ , 𝑢 ∈ 𝑈

∑

𝑟∈𝑅𝑓
𝑧

𝑥𝑓𝑟 = 1 𝑓 ∈ 𝐹

𝑥𝑓𝑟 ∈ {0, 1} 𝑓 ∈ 𝐹 , 𝑟 ∈ 𝑅𝑓
𝑧 .

The problem above represents an instance of the MMKP. Within the knapsack-analogy, we need to choose one item (route) from
each group (flight) such that total payoff is maximized (displacement cost is minimized), while the capacity limit of the knapsack
(airspace) is not exceeded on any dimension (sector-time resource). □

We can also interpret the proof as follows: to determine an exact solution to the integrated routing and sector opening problem
we would need to solve an MMKP for every possible combination of airspace configurations, of which there are ∏

𝑎 |𝐶
𝑎
|

𝑈𝑚𝑎𝑥 . In
order to find an approximate solution in polynomial time, we decouple the sector-opening from the routing procedure: We first
determine the best candidate configuration set 𝐶 ′ and then solve the remaining routing problem as one instance of the MMKP.

4.2.1 Determine best candidate configuration
To find configuration set 𝐶 ′, we first assign each flight to the route with lowest displacement cost (giving allocation 𝑥), and then

determine the feasible configuration that creates the lowest total capacity shortage for routing 𝑥. Let parameters 𝑘𝑎𝑐𝑢 represent the
capacity shortage (i.e., the number of flights that exceed sector capacity limits) in airspace 𝑎, configuration 𝑐 ∈ 𝐶𝑎 and time unit 𝑢.

We have 𝑘𝑎𝑐𝑢 ∶=
∑

𝑙∈𝐿𝑐

(

∑

𝑒∈𝐸𝑙
∑

𝑓∈𝐹𝑡
∑

𝑟∈𝑅𝑓
𝑧′
𝑏𝑓𝑟𝑒𝑢𝑥

𝑓
𝑟 −𝑙

)+
, where 𝑥+ ∶= max{𝑥, 0}. Configuration set 𝐶 ′ can then be determined

with the following configuration ILP:

𝐂𝐈𝐋𝐏 ∶min
𝑦

∑

𝑎,𝑐,𝑢
𝑘𝑎𝑐𝑢𝑦𝑎𝑐𝑢 (8a)

s.t.
∑

𝑢

∑

𝑐∈𝐶𝑎
ℎ̄𝑎𝑐𝑦𝑎𝑐𝑢 ≤ 𝐻𝑎 𝑎 ∈ 𝐴 (8b)

∑

𝑐∈𝐶𝑎
𝑦𝑎𝑐𝑢 = 1 𝑎 ∈ 𝐴, 𝑢 ∈ 𝑈 (8c)

𝑦𝑎𝑐𝑢 ∈ {0, 1} 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑎, 𝑢 ∈ 𝑈. (8d)

Configuration set 𝐶 ′ = {𝑐′𝑎𝑢 ∶ 𝑎 ∈ 𝐴, 𝑢 ∈ 𝑈} consists of individual configurations 𝑐′𝑎𝑢 for which 𝑦𝑎𝑐′𝑢 = 1 for each airspace and
operating time. The described program decomposes by airspace. For each airspace, the resulting problem represents a multiple
choice knapsack problem (MCKP), which again is -hard. For most airspaces, the number of configuration options is sufficiently
low so that the problem can still be solved exactly in reasonable time; in any other case, we revert to heuristic approaches for the
84
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4.2.2 Determine best routing within configuration
In a second step, we apply an MMKP heuristic based on the approach by Moser et al. (1997) to determine the optimal routing of

lights given airspace configuration set 𝐶 ′. The approach is summarized in Algorithm 1. We establish an initial infeasible solution
by assigning each flight to the route with lowest displacement cost. In each iteration we then reassign flights on the most-violated
sector until all sectors are within capacity limits 𝑙. Let 𝐿′ = {𝑙 ∈ 𝐿𝑐′ ∶ 𝑐′ ∈ 𝐶 ′} represent the sectors defined by configuration 𝐶 ′.

ased on the current infeasible routing, we determine the most-violated sector 𝑙∗ ∈ 𝐿′ as the one with the largest relative capacity
hortage 𝑘̄𝑙. Let 𝑤𝑓𝑟𝑙 =

∑

𝑒∈𝐸𝑙 𝑏𝑓𝑟𝑒𝑢∕𝑙 be the relative ‘‘weight’’ of flight 𝑓 and route 𝑟 on sector 𝑙 ∈ 𝐿′, and let 𝑟′ be the currently
elected route for 𝑓 . Then 𝑘̄𝑙 =

∑

𝑓∈𝐹𝑡 𝑤𝑓𝑟′𝑙 for each sector 𝑙 ∈ 𝐿′.
To decide which flight to reassign to another route, we first determine flights and routes with a change of capacity usage on 𝑙∗,

.e. with positive value 𝑤𝑓𝑟′𝑙∗ −𝑤𝑓𝑟𝑙∗ . For these flights and routes, we then compute decision parameter 𝛾𝑓𝑟 that weighs the change
n displacement cost against the change in capacity, as follows,

𝛾𝑓𝑟 =
𝑑𝑓𝑟 − 𝑑𝑓𝑟′ −

∑

𝑙∈𝐿′ 𝜇𝑙(𝑤𝑓𝑟′𝑙 −𝑤𝑓𝑟𝑙)
𝑤𝑓𝑟′𝑙∗ −𝑤𝑓𝑟𝑙∗

,

here 𝜇𝑙 is the Lagrange multiplier for sector 𝑙 ∈ 𝐿′. The general idea is to iteratively approximate with 𝜇𝑙 the dual value of the
onstraint on sector 𝑙; for a detailed background of the heuristic see Moser et al. (1997). We then reassign the flight with the lowest
atio 𝛾𝑓𝑟 from 𝑟′ to 𝑟, update the Lagrange multiplier 𝜇𝑙∗ (as shown in Algorithm 1), and reiterate the process until a feasible solution
s found.

Algorithm 1 MMKP-heuristic for ATM routing model
Input: Set of flights 𝐹 and product types 𝑍, candidate best configuration 𝐶 ′

1: Initialize: 𝑟′𝑓 ∶= argmin𝑟∈𝑅𝑓 𝑑𝑓𝑟 for all 𝑓 ∈ 𝐹𝑡, 𝜇𝑙 ∶= 0 for 𝑙 ∈ 𝐿′

2: Establish feasible solution: Iterate until 𝑘̄𝑙 ≤ 1∀𝑙 ∈ 𝐿′

3: Compute 𝑘̄𝑙 and set sector 𝑙∗ ∶= argmax𝑙 𝑘̄𝑙
4: For flights with positive 𝑤𝑓𝑟′𝑙∗ −𝑤𝑓𝑟𝑙∗ on 𝑙∗, store route with lowest 𝛾𝑓𝑟 .
5: Determine flight 𝑓 and route 𝑟 with lowest 𝛾𝑓𝑟 , reassign flight and update Lagrange Multiplier: 𝑟′ = 𝑟, 𝜇𝑎𝑙𝑢∗ = 𝜇𝑎𝑙𝑢∗ + 𝛾𝑓𝑟
6: Improve feasible solution: Iterate until no further improvement found
7: Compute 𝛿𝑓𝑟 for all 𝑓 ∈ 𝐹𝑡, 𝑟 ∈ 𝑅𝑓 .
8: Find flight and route with largest 𝛿𝑓𝑟 and set 𝑟′𝑓 ∶= 𝑟.

Output: Routing 𝑅∗ = {𝑟′𝑓 ∶ 𝑓 ∈ 𝐹 }

Finally, we improve the feasible solution further by using potential spare capacity on sectors with non-binding constraints. To
o that, we compute an improvement factor 𝛿𝑓𝑟 for all routes that are currently not selected (i.e., 𝑟 ≠ 𝑟′) on each flight:

𝛿𝑓𝑟 = 𝑑𝑓𝑟′ − 𝑑𝑓𝑟 if 𝑑𝑓𝑟′ > 𝑑𝑓𝑟 and 𝑘̄𝑙 −𝑤𝑓𝑟′𝑙 +𝑤𝑓𝑟𝑙 ≤ 1, 𝑙 ∈ 𝐿′.

The flight 𝑓 and route 𝑟 with the largest value 𝛿𝑓𝑟 is then reassigned from route 𝑟′ to 𝑟, and the procedure terminates with final
routing 𝑅∗ = {𝑟′𝑓 ∶ 𝑓 ∈ 𝐹 } when no further improvement is found (i.e., 𝛿 = ∅). As shown in Moser et al. (1997), Algorithm 1 has
complexity (𝑚(𝑛 − 𝑔)2 + 𝑚𝑛), where 𝑚 = |𝐿′

| is total number of sectors given configuration 𝐶 ′, 𝑛 =
∑

𝑓∈𝐹𝑡 𝑅
𝑓 is total number of

flight–route combinations, and 𝑔 = |𝐹𝑡| is total number of flights.
The heuristic by Moser et al. (1997) was chosen because it is one of few MMKP heuristics that start from a very good (i.e., low-

cost) but infeasible solution and iteratively establish feasibility, rather than vice versa. In European ATM, many flights may be
assigned to their shortest route (having least displacement cost) without violating capacity constraints, so that we expect to require
fewer iterations to establish feasibility from an initial low-cost routing, rather than to establish optimality from a high-cost, feasible
routing. In addition, the heuristic allows us to run the routing model in real time.

4.3 Insertion heuristic to determine opportunity cost

Now that we have developed suitable routings for sample scenarios (𝑋𝑆
𝑇+1,𝑊

𝑆 ), we want to compute opportunity cost for selling
any product 𝑗 = (𝑓, 𝑧) at price set 𝑝𝑓 , where 𝑓 ∈ 𝐹𝑡 is any flight that has not ’’arrived‘‘ yet. Since we cannot define product 𝑗 for any
non-scheduled flight until the request for the flight actually comes in, the procedure needs to be carried out in real-time (at least
for these flights). To achieve the desired efficiency for online calculation, we apply a simple insertion heuristic that computes the
cost 𝛥𝑗𝐷(𝑋𝑆

𝑇+1,𝑊
𝑆 ,𝐻) of adding product 𝑗 to the final routings for sample (𝑋𝑆

𝑇+1,𝑊
𝑆 ). We have

𝛥𝑗𝐷(𝑋𝑆
𝑇+1,𝑊

𝑆 ,𝐻) ∶= 𝐷(𝑋𝑆
𝑇+1 ∪ (𝑗, 𝑝𝑓 ),𝑊 𝑆 ,𝐻) −𝐷(𝑋𝑆

𝑇+1,𝑊
𝑆 ,𝐻).

To compute this cost, we first fix the configuration 𝐶 ′ determined in step 1, giving sectors 𝑃 ′. To ensure that we use the most
economical feasible configuration, we collapse further sectors in an airspace if this action does not increase 𝑘 , and update 𝐶 ′
85
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accordingly. For each product type 𝑧 ∈ 𝑍 and sample scenario (𝑋𝑆
𝑇+1,𝑊

𝑆 ), we then determine route 𝑟′ ∈ 𝑅𝑓
𝑧 that generates the

owest increase in displacement cost while keeping the resulting solution feasible, i.e., the route with lowest 𝛿𝑓,𝑆𝑟 where

𝛿𝑓,𝑆𝑟 =

⎧

⎪

⎨

⎪

⎩

𝑑𝑓𝑟 if 𝑓 ∈ 𝐹𝐺 and 𝑘̄𝑙 ≤ 1, 𝑙 ∈ 𝐿′

𝑑𝑓𝑟 if 𝑓 ∈ 𝐹𝑡∖𝐹𝐺
𝑡 and 𝑘̄𝑙 +𝑤𝑓𝑟𝑙 ≤ 1, 𝑙 ∈ 𝐿′

𝑀 otherwise.

f the resulting traffic flow for product 𝑗 is infeasible for 𝑟 ∈ 𝑅𝑓
𝑧 , we assign insertion cost of 𝑀 to the product (which we set to

aximum observed displacement cost); else we assign insertion cost of 𝑑𝑓𝑟 . We differentiate between scheduled and non-scheduled
lights in our conditions because all scheduled flights are already part of 𝑋𝑆

𝑇+1 (for all 𝑆 ∈ (𝑋)) so that we do not add 𝑤𝑓𝑟𝑙. This
pproach will generate slightly larger opportunity cost for non-scheduled flights, which reflects the additional uncertainty these
lights create. The insertion cost 𝛥𝑗𝐷(𝑋𝑆

𝑇+1,𝑊
𝑆 ,𝐻) = 𝛿𝑆,𝑓𝑟′ is then used in (7) to approximate opportunity cost.

The approach described above incorporates the expected effect on total displacement cost 𝐷(𝑋𝑇+1,𝑊 ,𝐻) in the computation of
pportunity cost, but it does not reflect the soft considerations discussed in Section 3.2.1. To ensure revenue neutrality and fairness,
e compute:

𝛥𝑝𝜖
𝑅𝑁 = |1 − 𝑝̂ 𝑓

| (9)

𝛥𝑝𝜖
𝐹𝑅 = 𝑉 𝑎𝑟(𝑝 𝑓 ). (10)

Numerical experiments

The objective of this paper is to determine which setting for flight-to-route assignments is most effective in reducing total
isplacement cost. Therefore, we test our proposed methodology on a medium-sized case study. The quality of the flight-to-route
ssignments in each setting is measured in terms of (a) reduction of displacement cost (both delay and rerouting), (b) availability
f feasible flight assignments and (c) ability to ensure revenue neutrality and fairness. In Section 5.1 we describe the settings and
orresponding decision policies which we evaluate, in Section 5.2 we discuss the simulation study and evaluation process, and in
ections 5.3–5.4 we report our results.

.1 Simulation settings: Decision policies

In order to examine the value of different flight-to-route assignments in the pre-tactical phase, we compare 3 different settings.
n the first setting, the NM retains full flexibility on how to route flights through the network, leading to the following decision
olicy:

• Network Manager decision (NMd): We let the NM choose the route for each flight. This is modeled by assigning the most flexible
trajectory product to all flights (at a price of 1 to ensure revenue neutrality), and determining the resulting displacement cost
using CILP and the routing heuristic.

n the second setting, the AU retains full flexibility to choose the route for each flight, giving the second decision policy:

• Airspace User decision (AUd): We let the AU choose the route for each flight. This is modeled by assigning the least flexible
trajectory product to all flights (at a price of 1 to ensure revenue neutrality), and determining the resulting displacement cost
using CILP and the routing heuristic. We implicitly assume that all AU prefer to fly the shortest route, which seems reasonable
given that the charge is the same for all routes.

n the third setting, flexible trajectory products are introduced (see Section 3.1.1) and the NM decides on the price charged to the
U for each product type. Given the price, the AU then decides which product to purchase (based on the AU choice model, which we

ntroduce in Section 5.2.1) and the NM finally decides how to route the flight based on the purchased product type. We differentiate
hree pricing policies in this setting:

• Foresight static pricing (FS): We set initial prices for each product type and keep them constant across the booking horizon.
In order to provide a fair comparison to the dynamic pricing policies, we set prices for each product type to the average
price offered to AUs for the respective product under the FD policy (see below). These prices are evaluated through the
simulation runs described in the next subsection, which is why the policy implicitly includes foresight. Using the FS policy
lets us determine the value of making dynamic decisions.

• Hindsight dynamic pricing (HD): Instead of using static prices, we adjust prices dynamically based on the flight arriving to the
booking process. To compute prices, we determine insertion cost based only on existing bookings; hence the term hindsight
policy. In particular, we determine the cost of inserting each product type into the best routing of all current flights. Using
the HD policy lets us determine the value of simulating the future (by comparing it to the FD policy below), which is
computationally expensive. In summary, prices for the HD policy are set based on (5), where we compute expected opportunity
cost as:

̂ 𝑆 𝑅𝑁 𝑅𝑁 𝐹𝑅 𝐹𝑅
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Fig. 1. Binary logit function to model AU choice.

• Foresight dynamic pricing (FD): In contrast to HD, insertion cost is determined based on the foresight approach described in
Section 4.3, where each scenario reflects a full schedule for cut-off time 𝑇 + 1. We compute opportunity cost as follows:

𝛥(𝑗,𝑝) 𝑉𝑡+1(𝑋) =
∑

𝑆∈(𝑋)

𝛥𝑗𝐷(𝑋𝑆
𝑇+1,𝑊

𝑆 ,𝐻)
|(𝑋)|

+ 𝜃𝑅𝑁𝛥𝑝𝜖
𝑅𝑁 + 𝜃𝐹𝑅𝛥𝑝𝜖

𝐹𝑅.

To determine insertion cost in the two dynamic pricing policies (HD and FD), we use the CILP, the routing heuristic and the
insertion heuristic from Section 4. Note that all prices are quoted as relative prices with regards to the benchmark price on a
certain origin–destination pair (see Section 3.2.1), so they automatically reflect the route characteristics of a flight.

5.2 Simulation study

5.2.1 Simulation runs and evaluation
We conduct a simulation study in order to evaluate the impact of the different settings. In each run, we simulate a full booking

horizon, where the sequence of flights arriving to the booking process (sample path) is fixed across pricing policies to ensure
comparability. Each sample path 𝜔 defines an ordering of flights in 𝐹𝜔 = 𝐹𝐺 ∪𝐹𝑁,𝜔 where 𝐹𝑁,𝜔 is a subset of non-scheduled flights
𝐹𝑁 and varies from one run to another. For each flight 𝑓 ∈ 𝐹𝜔 arriving to the booking process, we determine the price vector
𝑝𝑓𝑡 based on the respective pricing policy. For all dynamic pricing policies, we compute opportunity cost from a fixed number of
scenarios 𝑆 ∈ (𝑋). Each scenario 𝑆 consists of a set of flights and product types for the end of the booking horizon as well as sector
capacities 𝑊 , and is created using the sampling strategy in Section 4.1. Recall that the offline process of determining routings for all
𝑆 ∈ (𝑋) is the most time-consuming part in computing opportunity cost. Therefore, we need to decide carefully on two parameters
that impact the solving time, and solution quality, of this process: the frequency with which the offline process should be re-run
(to reflect the latest bookings 𝑋𝑡 in (𝑋)), and the number of scenarios 𝑆 ∈ (𝑋) to use in (7) to compute opportunity cost. We
decide to re-run the offline process after every 10 flights that have arrived to the booking process, and to use 20 scenarios for each
computation. Any higher frequency of updates or higher number of scenarios did not notably improve the quality of estimates in
initial simulation runs. The scenarios are randomly selected from (𝑋) and are fixed across policies, but vary for each simulation
run.

In our simulation study we choose to offer two product types, one flexible and one direct product: 𝑍 = {𝑓𝑙𝑒𝑥, 𝑑𝑖𝑟}. Furthermore,
we allow the prices 𝑝𝑓𝑧 to be chosen among 𝑃𝑟 = {0.9, 0.91,… , 1.4}, which contains a total of 51 scaling factors (i.e., 𝐼 = 51). When a
pricing decision 𝑝𝑓 has been made for a booking request (giving 𝑝𝑓𝑙𝑒𝑥 and 𝑝𝑑𝑖𝑟), we model the product decision according to the AU
choice model. In particular, we assume that the AU chooses between the two product types depending on the ratio of their prices,
𝜈 = 𝑝𝑓𝑙𝑒𝑥∕𝑝𝑑𝑖𝑟. We use a binary logit function to model AU choice where the probability of choosing one product type over another
changes rapidly close to an infliction point for 𝜈 (which we set to 0.85) (see Fig. 1):

𝑃𝑓𝑙𝑒𝑥(𝑝𝑓 ) =
exp(30−30𝜈∕0.85)

exp(30−30𝜈∕0.85) +1
= 1 − 𝑃𝑑𝑖𝑟(𝑝𝑓 ).

Given all product choices for 𝑡 = 1,… , 𝑇 for a given sample path, we then determine displacement cost of the resulting state
𝑋𝑇+1, given a further realization of uncertainty 𝑊𝑇+1, using the CILP and Algorithm 1. We also obtain whether the routing of 𝑋𝑇+1
is feasible, and if it is not, how many flights could not be assigned. For the FS policy, we set static unit prices 𝑝𝑓𝑙𝑒𝑥 = 0.98 and
𝑝𝑑𝑖𝑟 = 1.16 based on the simulation results from the FD policy. We simulate a total of 2000 runs for each policy.

5.2.2 Description of case study
The case study used for the computational analysis is based on Starita et al. (2016). The artificial network is depicted in Fig. 2.

It consists of 5 airspaces (Q, R, S, T, U), four of which have 2 elementary sectors, and one (airspace U) has 3 elementary sectors.
The airspaces are arranged such that the shortest routes (i.e., routes b and c in Fig. 2) always cross airspace Q. Capacity budget 𝐻 is
10 sector-hours for airspace U and 7 sector-hours for all others. Furthermore, the network contains a total of 120 scheduled flights
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Fig. 2. Air route network with 2 exemplary flights.
Source: Figure taken from Starita et al. (2016).

and a pool of 80 non-scheduled flights from which we sample the subsets 𝐹𝑁,𝜔. The size of subsets 𝐹𝑁,𝜔, for all sample paths and
scenarios 𝑆 ∈ (𝑋), is drawn from a normal distribution with mean 30 and standard deviation of 8. Each flight has assigned to it
one of 3 aircraft types, one of 8 origin–destination pairs and a departure time. Each origin–destination pair is associated with 8–10
different route options which, in turn, are fully described by the sequence of elementary sectors they cross during a certain time
after departure, and a delay (capped at 30 min). The displacement cost of any flight varies between 0 and 1750 EUR and depends
on aircraft type (small, medium or large aircraft) and route choice. It increases with aircraft size, with the length of the route and
with delay. To account for infeasible routings, a dummy route is added for each origin–destination pair with no sector requirements
and displacement cost twice the largest cost on any non-dummy route. To model the two product types, we define 𝑅𝑓

𝑑𝑖𝑟 ∶= 𝑟∗𝑓 (where
𝑟∗𝑓 is the shortest route of flight 𝑓 ) and 𝑅𝑓

𝑓𝑙𝑒𝑥 ∶= 𝑅𝑓 .

We consider an operating time interval of 2 h, with configuration changes allowed every 30 min. To model capacity uncertainty,
we reduce the capacity of a randomly chosen elementary sector by 10% in 5% of cases and by 30% in another 5% of cases, for
each airspace. This reduction is derived from historic ATM regulations in 2016, in which weather events occurred on around 5% of
days across 15 ACCs in Europe and impacted 30% of capacity, and employee absence occurred for another 5% and impacted 10%
of capacity, on average. The reductions apply across the 2 h operating time interval. Finally, for all policies with flexible products
(FS, HD and FD), we set penalties 𝜃𝑅𝑁 and 𝜃𝐹𝑅 to a value 10 times the maximum possible displacement cost per flight (i.e., 1750).
We provide the full case study dataset in Tables 3–6 to allow results to be replicated.

5.3 Performance of routing heuristic

The simulation study allows us to evaluate how well the different static and dynamic pricing policies are working. Since the
performance of all dynamic policies depends on how well we can estimate opportunity cost, we first comment on the performance
of the proposed heuristic (CILP and Algorithm 1) to generate these estimates. All algorithmic approaches are implemented using
Python, supported by the commercial Gurobi solver for optimization models. The simulations are run on AWS Batch using 4 GB
RAM.

We test the heuristic by computing 𝐷(𝑋𝑆
𝑇+1,𝑊

𝑆 ,𝐻) on a total of 20 scenarios, where 𝑋𝑆
𝑇+1 and 𝑊 𝑆 are generated as described

in Section 4.3. Note that we assume product type 𝑓𝑙𝑒𝑥 for all flights (i.e., routes can be chosen from 𝑅𝑓 for all 𝑓 ). The results from
the heuristic are compared against the exact ILP solution determined using Gurobi solver on 20 instances, and are summarized in
Table 1 (the full results on all instances are reported in Tables 3–6). The heuristic determines routings with an average displacement
cost gap of 11.3% to the optimum solution based on the ILP over 20 instances. An average of 4.4% and 5.6% of flights have to be
assigned to dummy routes for the ILP and heuristic, respectively.

While the heuristic approximates displacement cost reasonably well when compared to the optimum solution, we are eventually
interested in how well it performs at estimating opportunity cost. Fig. 3 compares the resulting opportunity cost between the ILP
and heuristic for all 200 flights in the case study. The cost are computed by inserting the flight into the 20 schedules from Table 1
determined through either the ILP or heuristic (see (7)). The strong correlation with R2 of 98% suggests that the heuristic represents
an effective method to approximate actual opportunity cost. In particular, we observe a median absolute error of 14.5, which is
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Table 1
Summary of simulation results of routing model (n = 20 instances).

ILP Heur.

Cost Time (s) N. a. Cost Time (s) N. a. Cost gap

� 26,023 3022 4.4% 28,852 2.2 5.6% 11.3%

N.a. stands for flights that are not assigned to a non-dummy route.

Fig. 3. Opportunity cost of ILP vs. heuristic on 200 flights.

slightly more than 1% of average opportunity cost of 1250. The median absolute error is chosen over the mean absolute error (MAE)
as measure of performance since a few large errors inflate the MAE, as can be seen in Fig. 3.

Furthermore, the approach offers the necessary efficiency for real-time implementation. The heuristic solves all 20 instances
significantly faster than the ILP with an average solution time of 2.2 s, compared to 3022 s ≈ 50 min for the exact approach.
To understand how the solution time scales for larger instances, recall that the heuristic has complexity (𝑚(𝑛 − 𝑔)2 + 𝑚𝑛) for
each scenario, where 𝑚 is the number of sectors opened across time (approx. 40 in the case study), 𝑛 the number of flight–route
combinations (approx. 1350) and 𝑔 the number of flights (approx. 150). If we assume that the solving time increases linearly with
the complexity of the heuristic (which is realistic if the algorithm has reached asymptotic behavior for the analyzed case study), a
realistic-sized instance in European airspace (25,000 daily flights, 7 route options each, and 2000 sectors opened) would require
around 20 days to solve with the heuristic. It is important to note that each scenario can always be evaluated independently (since
the solution of one scenario does not influence the others) so that the process of computing opportunity cost can be parallelized
across scenarios.

In its current form, the heuristic is still too complex to solve a realistic-sized instance sufficiently fast. However, there are two
ways to reduce the solution time further (e.g., to allow for daily updates of opportunity cost), which warrant further research: First,
the number of flights may be limited to those frequently affected by reroutings. Melgosa et al. (2019) find that on a typical day more
than 75% of flights will fly the shortest route, and are thus unaffected by reroutings. If these flights can be identified a priori, they
can be excluded from the optimization by assigning them to their shortest route. Second, the routing problem may be decomposed.
For instance, the day of operation may be split into distinct time intervals (e.g., morning, afternoon and evening), and the problem
solved for each interval separately. This decomposition would substantially reduce solution time (due to the impact on both 𝑛 and
𝑚), but it would also impact the problem structure and the solution quality.

5.4 Comparison of settings

Using the routing heuristic to determine opportunity cost, we test how effective the different settings and policies are at reducing
total displacement cost. The following Table 2 compares displacement cost, relative cost savings, share of flights that are not assigned
(in case of infeasibility), and ATM revenues (relative to capacity cost) for the five policies. We want to emphasize at this point that
the experiments are conducted to illustrate the value of the methodological approach to determine dynamic prices, and that the
results are specific to the experimental setup. The limitations to generalizing these results are discussed in Section 5.4.3.

As expected, the lowest displacement cost of 27,475 are generated if the network manager is given full flexibility to assign
flights to routes (NMd). These cost roughly triple when shifting the decision power entirely to the airspace user (AUd), with cost
of 83,950. All three policies with flexible trajectory products report substantially lower cost than the AUd (or full-choice) policy,
showing that the value of providing such products is high. With cost of 32,248 the foresight dynamic policy (FD) reduces cost
vs. the AUd even by 62% (significant at 95% level), and even comes close to the NMd performance. Despite the small size of the
case study, the results suggest that providing flexible trajectory products can serve as a powerful tool to balance AU choice with
cost-efficient routing. Among the three flexible product policies, we see that the FD significantly outperforms the HD policy (which
computes opportunity cost based only on existing bookings), with an average reduction of 40%. This confirms that using a foresight
approach provides significant additional value. The FD also significantly outperforms the static pricing policy (FS), showing that
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Table 2
Simulation results of pricing policies over 2000 runs.

Setting Policy Cost Cost savings of FD Not assigned Revenues

Flexible products HD 54,097 −40%* 21.5% 100.0%
FS 40,297 −20%* 14.6% 105.9%
FD 32,248 – 10.2% 100.0%

No choice NMd 27,475 +17%* 6.6% 100.0%
Full choice AUd 83,950 −62%* 31.3% 100.0%

*Significant at 95% confidence level.

Fig. 4. Displacement cost distribution across all runs, n = 2000 (runs).

there is further value in dynamically adjusting prices for flexible products. Interestingly, the FS policy reports lower cost than the
HD policy, which suggests that there is no virtue in merely offering dynamic prices if these prices do not adequately reflect the
expected opportunity cost generated by the product.

In the optimum case, an average of 6.6% of flights have to be assigned to dummy routes, reflecting infeasible routings. As
expected, the flexible product policies show relatively lower shares on dummy routes (10%–22%) than the AUd policy (31%).
However, the absolute level of these shares depend largely on the structure of the case study and can therefore not be directly
interpreted. Finally, total revenues generated by both dynamic pricing policies (HD and FD) cover quite exactly 100.0% of capacity
cost, which suggests that requirement (9) is very effective at ensuring revenue neutrality. However, in the case of FS the collected
revenues exceed capacity cost by a sizable 5.9%. Since prices in the FS are static and hence cannot be adjusted based on collected
revenues within the booking period, the challenge is to determine appropriate prices in advance that will create cost-neutral revenues
(possibly at the expense of displacement cost). For NMd and AUd policies, the NM will simply set a price of 1 for any route option
and thus retains full control to manage revenue neutrality. In the following sections, we discuss managerial insights specifically for
the NM and AU.

5.4.1 Managerial insights for network manager
The main objective of the NM is to design a route assignment mechanism that leads to lowest possible displacement cost, and

can be implemented with reasonable resources. To judge the resource consumption of the different policies, we compare computing
times for offline and online calculations. The offline calculation (i.e., determining best routings for all scenarios) is performed by
the HD policy in 0.2 s, and by the FD policy in 32 s. The gap is largely due to the fact that we only need to evaluate one rather
small scenario (i.e., all existing bookings) for HD, but 20 full scenarios for FD. The NM therefore faces a trade-off between solution
quality (40% lower cost for FD) and computing resources (150x longer computing time vs. HD). While the current computation time
of 32 s for FD does not pose any problems for implementation, it increases roughly quadratically with the size of the case study
(Section 5.3). As long as the offline calculation, parallelized across scenarios, can be carried out in 24 h or less, the FD policy is
preferred due to its superior performance. If computing time renders a daily update of the FD policy infeasible, static pricing (FS) is
preferred over the HD and FD policies. The online calculation (i.e., determining optimal price sets) is performed in 0.07 and 0.2 s for
the HD and FD policies, respectively, which renders both policies suitable for real-time application. Most importantly however, the
solution time of the online process does not depend on the size of the case study so it remains sufficiently fast for larger networks.

To analyze how effectively each policy reduces displacement cost, we compare in Fig. 4 the distribution of total displacement
cost for the NMd, FD and AUd policies across all runs. In case the AU fully decides on the route option (AUd), the displacement cost
vary widely across runs. This is because a large share of flights are unable to be routed feasibly according to the chosen trajectory
product and are assigned to dummy routes with large penalties. In contrast, the NMd and FD produce similarly narrow distributions,
with cost varying roughly between 25,000 and 40,000 for half of the runs. The results suggest that the NM can expect a similarly
stable cost distribution under dynamic trajectory pricing (FD) as when they fully decide on the routing themselves (NMd), which
gives confidence in the mechanism.

Finally, we compare the average opportunity cost for the two product types to judge the ‘‘value of flexibility’’ of offering a flexible
product. Under the FD policy, the opportunity cost for the direct and flexible product amount to 1475 and 510, respectively. While
the absolute numbers depend on the case study design and cannot be interpreted, the magnitude of the difference (almost 3 times
lower cost for flexible products) shows that there is significant value in providing flexible products in the pre-tactical ATM process.
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Fig. 5. Distribution of average displacement cost by policy, n = 200 (flights).

Fig. 6. Distribution of average displacement cost on FD policy by aircraft type, n = 200 (56 small, 108 medium, 36 large).

5.4.2 Managerial insights for airspace user
The main objective of the AU is to keep total cost from delays, detours and ATM service charges as low as possible while retaining

maximum route choice in the booking process. We therefore analyze how displacement cost are distributed among flights in Figs. 5
and 6. In contrast to Fig. 4, where we compare total displacement cost between runs, Figs. 5–6 compare average displacement cost
per flight between all 200 flights in the case study. Similar to the earlier observation, Fig. 5 shows that AUs can expect a much
more unequal distribution of displacement cost if they themselves decide on the desired route (AUd). In fact, 75% of flights show
displacement cost below 200 for the NMd and FD policies, but reach up to 1200 under AUd. Generally, the distribution of cost is
similarly narrow for the NMd and FD policies. This finding suggests that even if the NM can fully decide on the route option, this
does not lead to a more unequal distribution of delays and detours among flights.

Fig. 6 compares the distribution of displacement cost under the FD policy for different aircraft types. We see that small aircrafts
do not only show the highest median displacement cost, but also the largest variation in cost. This may seem counterintuitive because
displacements are generally less costly for smaller than for larger aircraft. However, due to their relatively cheaper displacements,
these aircraft are more likely to be rerouted or delayed so as to avoid congested sectors. In contrast, the optimization will avoid
displacing larger aircraft altogether due to the high cost it creates. The result suggests that business aviation and non-scheduled
flights operating on small aircraft should expect the largest uncertainty regarding delays and detours when planning their flights.

Finally, Fig. 7 shows how the average prices offered under the FD policy differ across time and for different aircraft types. We
analyze only scheduled flights since they form part of every traffic scenario and as such are more likely to feature several observations
for a single booking time 𝑡. We find that relative prices are highest for small aircraft, followed by medium and large aircraft, and that
this observations is specifically pronounced for the direct product. This is because small aircraft are more likely to be rerouted due
to their lower displacement cost (see Fig. 6) which makes the direct product less desirable and thus more expensive for these flights.
We also see that the price fluctuations are highest for large aircraft, which is likely due to the fact that the large displacement cost
of these flights include larger price differences (depending on whether the flights crosses congested airspace or not). In response,
AUs operating large aircraft may benefit from checking prices more frequently, particularly if they intend to purchase the direct
product.

Based on the prices offered for both product types, we can also test whether the fairness condition (see Section 3.2.1) prevents
the NM from choosing prices such that one product type is effectively ‘‘imposed’’ on the AU. In fact, the average price offered
for the flexible and direct product under the FD policy are 0.98 and 1.16, respectively. Given our AU choice model, this price ratio
𝑝𝑓𝑙𝑒𝑥∕𝑝𝑑𝑖𝑟 of 0.84 gives a probability to purchase the flexible product of around 54%, which confirms that indeed no one product type
is imposed on the AUs. If the fairness condition was levied, we would expect a probability close to 100%, because the optimization
would force the AU to purchase the flexible product whenever its opportunity cost is strictly lower than that for the direct product.
Therefore, the fairness condition creates an effective trade-off between network performance (in terms of displacement cost) and
AU choice.
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Fig. 7. Average price offered under FD policy by aircraft and product type, n = 120 (scheduled flights).

Table 3
Simulation results of routing model on 20 instances.

ILP Heur.

Cost Time (s) N. a. Cost Time (s) N. a. Cost gap

1 31,679 1,719 5.3% 35,695 2.6 7.3% 12.7%
2 28,000 3,953 5.3% 30,668 2.3 6.7% 9.5%
3 26,880 3,256 3.3% 30,494 2.2 6.7% 13.4%
4 25,254 3,125 4.7% 27,554 2.2 6.0% 9.1%
5 22,724 3,078 2.7% 25,494 2.1 4.0% 12.2%
6 18,687 614 2.0% 20,733 1.7 2.7% 10.9%
7 35,304 10,700 8.7% 38,514 2.7 8.7% 9.1%
8 35,247 3,672 7.3% 39,313 2.8 9.3% 11.5%
9 29,772 2,832 6.0% 31,632 2.1 7.3% 6.2%
10 15,388 504 0.7% 17,581 1.7 1.3% 14.3%
11 18,328 739 2.0% 20,885 1.9 2.7% 14.0%
12 26,243 3,591 4.7% 29,970 2.4 6.7% 14.2%
13 21,046 705 2.7% 23,910 1.9 3.3% 13.6%
14 25,525 823 4.0% 27,434 2 5.3% 7.5%
15 29,793 3,553 5.3% 33,078 2.4 7.3% 11.0%
16 23,676 1,178 2.7% 27,041 2.2 4.0% 14.2%
17 16,876 858 2.0% 19,775 1.8 2.0% 17.2%
18 42,084 10,121 12.0% 45,013 2.5 13.3% 7.0%
19 17,220 603 1.3% 18,875 1.7 2.0% 9.6%
20 30,737 4,813 4.7% 33,376 2.6 6.0% 8.6%

� 26,023 3,022 4.4% 28,852 2.2 5.6% 11.3%

N.a. stands for flights that are not assigned to a non-dummy route.

5.4.3 Limitations
There are a few limitations to the outlined experiments. In general, the case study represents a rather small artificial network

with several design choices that limit the generalizability of results. First, the route options are designed such that the shortest
route will almost always go through a bottleneck sector, which explains why the AUd policy performs rather poorly. Second, the
displacement cost for each route, albeit founded on recent research, represent artificial values so that their absolute levels cannot
be interpreted. Third, the performance of the policies depends on a range of pre-defined case study parameters, such as the capacity
budget and the penalty for dummy routes. For instance, a higher budget would lead to less infeasible routes, fewer penalties and thus
smaller differences in performance among policies. Apart from the case study, there are a few modeling assumptions that impact
our results. First, our choice model assumes that AUs make their product choice based only on ATM charges, which neglects the
influence of fuel cost and delays. Second, we assume that all AUs behave according to the same choice model, but different business
models (e.g., legacy vs. low-cost carrier) may warrant different behaviors. Finally, we differentiate only two product types in the
study, but further products may tilt the results in favor of one or another policy.

6 Conclusions

We demonstrate the value of dynamic pricing to steer demand in pre-tactical ATM. European ATM suffers from severe demand–
capacity imbalances, leading to EUR 550 million in ATM-related delay cost in 2017, according to Eurocontrol (2018). To reduce
these imbalances, we develop a methodological framework to test flexible trajectory products that are offered to AUs in the booking
process and differ in how flexibly the NM can route the flights during departure day. Pricing the trajectory products is particularly
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Table 4
Overview of routes for case study.

OD (Elementary sector, time period) Delay Displacement cost z

1 2 3 4 5 6 Small med. Large

0 (0, 2) (5, 2) (6, 2) (4, 2) 0 0 0 0 0
0 (0, 2) (3, 4) (4, 2) 0 152 280 355 1
0 (0, 2) (3, 2) (6, 2) (4, 2) 0 69 127 162 1
0 (0, 2) (5, 2) (3, 2) (4, 2) 0 69 127 162 1
0 (0, 2) (5, 2) (6, 2) (4, 2) 1 48 90 100 1
0 (0, 2) (5, 2) (6, 2) (4, 2) 2 120 236 313 1
0 (0, 2) (5, 2) (6, 2) (4, 2) 3 204 450 560 1
0 (0, 2) (5, 2) (6, 2) (4, 2) 4 321 693 888 1
0 (0, 2) (5, 2) (6, 2) (4, 2) 5 453 1004 1275 1
0 (0, 2) (5, 2) (6, 2) (4, 2) 6 611 1390 1740 1
1 (1, 2) (10, 4) (4, 2) 0 0 0 0 0
1 (1, 2) (6, 4) (5, 2) 0 152 280 355 1
1 (1, 2) (10, 4) (4, 2) 1 48 90 100 1
1 (1, 2) (10, 4) (4, 2) 2 120 236 313 1
1 (1, 2) (10, 4) (4, 2) 3 204 450 560 1
1 (1, 2) (10, 4) (4, 2) 4 321 693 888 1
1 (1, 2) (10, 4) (4, 2) 5 453 1004 1275 1
1 (1, 2) (10, 4) (4, 2) 6 611 1390 1740 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 0 0 0 0 0
2 (2, 1) (3, 1) (0, 2) (1, 2) (6, 1) (7, 1) 0 152 280 355 1
2 (2, 1) (3, 1) (8, 2) (1, 2) (6, 1) (7, 1) 0 69 127 162 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 1 48 90 100 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 2 120 236 313 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 3 204 450 560 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 4 321 693 888 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 5 453 1004 1275 1
2 (2, 1) (3, 1) (8, 2) (10, 2) (6, 1) (7, 1) 6 611 1390 1740 1
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 0 0 0 0 0
3 (2, 1) (3, 1) (4, 2) (5, 2) (6, 1) (7, 1) 0 152 280 355 1
3 (2, 1) (3, 1) (9, 2) (5, 2) (6, 1) (7, 1) 0 69 127 162 1
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 1 48 90 100 1
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 2 120 236 313 1
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 3 204 450 560 1
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 4 321 693 888 1
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 5 453 1004 1275 1
. . .
3 (2, 1) (3, 1) (9, 2) (10, 2) (6, 1) (7, 1) 6 611 1390 1740 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 0 0 0 0 0
4 (4, 2) (3, 4) (0, 2) 0 152 280 355 1
4 (4, 2) (9, 2) (3, 2) (0, 2) 0 69 127 162 1
4 (4, 2) (3, 2) (8, 2) (0, 2) 0 69 127 162 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 1 47 90 100 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 2 120 236 313 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 3 204 450 560 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 4 321 693 888 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 5 453 1004 1275 1
4 (4, 2) (9, 2) (8, 2) (0, 2) 6 611 1390 1740 1
4 0 1221 2780 3480 0
5 (4, 2) (0, 4) (1, 2) 0 0 0 0 0
5 (5, 2) (6, 4) (1, 2) 0 152 280 355 1
5 (4, 2) (0, 4) (1, 2) 1 47 90 100 1
5 (4, 2) (0, 4) (1, 2) 2 120 236 313 1
5 (4, 2) (0, 4) (1, 2) 3 204 450 560 1
5 (4, 2) (0, 4) (1, 2) 4 321 693 888 1
5 (4, 2) (0, 4) (1, 2) 5 453 1004 1275 1
5 (4, 2) (0, 4) (1, 2) 6 611 1390 1740 1
6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 0 0 0 0 0
6 (7, 1) (6, 1) (1, 2) (0, 2) (3, 1) (2, 1) 0 152 280 355 1
6 (7, 1) (6, 1) (1, 2) (8, 2) (3, 1) (2, 1) 0 69 127 162 1
6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 1 47 90 100 1
6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 2 120 236 313 1
6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 3 204 450 560 1

(continued on next page)
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Table 4 (continued).
OD (Elementary sector, time period) Delay Displacement cost z

1 2 3 4 5 6 Small med. Large

6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 4 321 693 888 1
6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 5 453 1004 1275 1
6 (7, 1) (6, 1) (10, 2) (8, 2) (3, 1) (2, 1) 6 611 1390 1740 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 0 0 0 0 0
7 (7, 1) (6, 1) (5, 2) (4, 2) (3, 1) (2, 1) 0 152 280 355 1
7 (7, 1) (6, 1) (5, 2) (9, 2) (3, 1) (2, 1) 0 69 127 162 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 1 47 90 100 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 2 120 236 313 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 3 204 450 560 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 4 321 693 888 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 5 453 1004 1275 1
7 (7, 1) (6, 1) (10, 2) (9, 2) (3, 1) (2, 1) 6 611 1390 1740 1

Column name ‘‘z’’ represents product types (0 = direct, 1 = flexible).

Table 5
Overview of flights for case study.

Flight ID OD Aircraft type Dep. time Flight type

F0 0 0 0 S
F1 0 1 1 U
F2 0 0 2 S
F3 0 0 2 S
F4 0 1 3 S
F5 0 1 3 S
F6 0 2 4 S
F7 0 2 4 U
F8 0 0 4 S
F9 0 0 5 S
F10 0 0 5 U
F11 0 1 5 S
F12 0 1 6 S
F13 0 1 7 S
F14 0 1 7 S
F15 0 0 8 U
F16 0 0 9 S
F17 0 0 10 S
F18 0 1 10 S
F19 0 1 12 S
F20 0 1 12 S
F21 0 1 13 S
F22 0 1 14 S
F23 0 1 15 U
F24 0 0 16 S
F25 0 0 17 S
F26 0 0 17 S
. . .
F190 2 2 5 U
F191 6 0 23 U
F192 3 2 12 U
F193 4 1 0 U
F194 5 1 3 U
F195 0 2 13 U
F196 4 2 2 U
F197 0 2 2 U
F198 3 2 8 U
F199 5 1 1 U

Flight type S represents scheduled and U non-scheduled flights.

hallenging since it requires solving a hard routing problem in the terminal condition, which itself is subject to uncertainty around
rriving flights and capacity provision. We use a MMKP-based heuristic to solve the difficult routing and sector-opening problem
offline), and an insertion heuristic with foresight to capture the uncertainties (online). By separating the offline generation of
outing schedules from the online estimation of opportunity cost, we can compute trajectory prices in real-time even for realistic-
ized instances. Once opportunity cost are estimated, they be used as an input to various dynamic pricing policies. The proposed
ynamic policies are tested on an artificial network with 150 flights, and compared against two other settings where either the
M or AU retains full mandate to route flights. The results show that dynamic pricing with foresight leads to network performance
94

lmost as high as if the NM decides on routing, and significantly outperforms both static pricing and full AU choice in the case
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Table 6
Overview of configurations for case study.

Sector ID Airspace Conf. ID Elementary sector Capacity

1 2 3

P0 R C1 0 1 18
P1 R C2 0 18
P2 R C2 1 18
P3 S C3 2 3 19
P4 S C4 2 17
P5 S C4 3 17
P6 T C5 4 5 18
P7 T C6 4 18
P8 T C6 5 18
P9 U C7 6 7 19
P10 U C8 6 17
P11 U C8 7 17
P12 Q C9 8 9 10 17
P13 Q C10 8 16
P14 Q C10 9 10 18
P15 Q C1 8 9 17
P16 Q C1 10 17
P17 Q C12 8 10 18
P18 Q C12 9 16
P19 Q C13 8 16
P20 Q C13 9 16
P21 Q C13 10 17

Sector ID refers to collapsed (not elementary) sectors.

study. The main advantage of the proposed trajectory pricing scheme in ATM is that it helps steer demand in line with capacity
while still providing choice to the AU in the booking process. Future research on the topic may consider, next to an application of
the methodology to a larger network, the introduction of a timing incentive that would reward earlier bookings with a lower price.
This would give the network manager more time to suggest alternative routes before departure.
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