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INTRODUCTION

Air travel demand estimation
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• Market Size Estimation → global air travel demand

• Air Traffic dataset is generated at many different levels (city pair, country pair) and in many different 
formats (Origin-Destination, Leg, Segment)

• Different varieties of information available for estimating future demand

• Different use cases for future demand data, short term route planning to long term aircraft ordering

• To cater to all use cases and to use different sources of data we support three varieties of future 
demand data
• Short Term – up to 12 months – at origin-destination level
• Medium Term – up to 36 months – at city pair and cabin level
• Long Term – up to 120 months – at quarterly country pair level

Background
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• If we let the historical passenger count be denoted by 𝑦1, … , 𝑦𝑇−1for a market 
𝑀, then we can write the forecasts as 𝑦𝑇+ℎ|𝐻.

where 

• 𝐻 is for training set of passenger count from 𝑦1 𝑡𝑜 𝑦𝑇−1 for a market 𝑀

• 𝑇 is for time with monthly frequency

• ℎ is for forecasting horizon taking account of all observations up to time 𝑇 − 1 for a market 
𝑀

Problem description
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Forecasting Methods

Grosche T. (2009) Integrated Airline Scheduling. In: Computational Intelligence in Integrated Airline Scheduling. Studies in Computational Intelligence, vol 173. Springer, Berlin, Heidelberg
Source:

Forecasting Methods

Qualitative Methods Quantitative Methods

Market 
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Techniques

Representative 
Judgement

Time-Series Projections Causal/Econometric Methods

Linear Trend on Moving 
Average

Annual Growth Average

Linear Trend

Exponential Smoothing

Regression Model

Simulation

Artificial Neural 
Networks
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• Passenger Demand Data
• The passenger demand dataset offers valuable market information for many types of Aviation analyses, including 

market sizes, route performance, traffic flows, and fares.

• Traffic
❑ Fully-routed itineraries with cabin level details

❑ By airline -- Ticketing and operating

❑ 3 connection points

❑ Directional data

• Fares
❑ Sabre in house

❑ By booking code

• Updated Monthly

• Available back to 2001

Data

Sabre
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• Directional Origin-Destination level data is aggregated at City Pair level.

• In this work, we follow Euro-control's definition of flight length. Euro-control defines 
❑ Short-haul routes as shorter than 1,500 km (930 mi; 810 nmi)

❑ Medium-haul between 1,500 and 4,000 km (930 and 2,490 mi; 810 and 2,160 nmi) 

❑ Long-haul routes as longer than 4,000 km (2,500 mi; 2,200 nmi)

• The demand data has 10 regions.

• Top 100 markets (by passenger count – in December 2018) in short-haul, medium- haul, and long-haul 
originating from all 10 regions in the passenger demand data. Therefore, we are considering 3000 
markets.

• Training Data:
❑ January 2010 to December 2015.

• Test Data: 
❑ January 2016 to December 2018.

Data Description
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Data Analysis

Short Haul Ex: San Francisco to Los Angeles (Air line: 543.36 km)

Augmented Dickey-Fuller Test
• Dickey-Fuller = -3.7587
• Lag order = 4 
• p-value = 0.02396
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Data Analysis

Medium Haul Ex: Bangalore to Dubai (Air line: 2,696 km)

Augmented Dickey-Fuller Test
• Dickey-Fuller = -2.9549
• Lag order = 4 
• p-value = 0.1818
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Data Analysis

Long Haul Ex: Singapore to London (Air line: 10,886 km)

Augmented Dickey-Fuller Test
• Dickey-Fuller = -5.8809
• Lag order = 4 
• p-value = 0.01
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1. Seasonal Naïve Method

2. ARIMA

3. Gradient Boosting based Regression

Algorithms
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• For Naïve forecast, current month’s passenger 
count is set to previous month’s passenger 
count.

𝑦𝑇+ℎ|𝐻 = 𝑦𝑇

• Airline passenger traffic data is seasonal 
(freq=12, for monthly passenger count).

• We set the forecasted passenger count to 
passenger count observed from the same month 
in the last year.

• 𝑦𝑇+ℎ|𝐻 = 𝑦𝑇+ℎ−12

Seasonal Naïve Method
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• 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑞, 𝑑) model,

• Where, 
• 𝜺𝒕 = white noise;
• 𝑝 = order of the autoregressive part;
• 𝑑 = degree of first differencing involved;
• 𝑞 = order of the moving average part;

• We used auto.arima()[1] from the R package forecast which returns best ARIMA model according 
to either AIC, AICc or BIC value. The function conducts a search over possible model within the order 
constraints provided. 

Auto-Regressive Integrated Moving Average (ARIMA)

[1] Hyndman, R., & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(3), 1 - 22. doi:http://dx.doi.org/10.18637/jss.v027.i03
Source:

http://dx.doi.org/10.18637/jss.v027.i03
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eXtreme Gradient Boosting (XGBoost)

[2] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 
785–794. ACM, 2016.

Source:

• Boosting is an ensemble technique where 
new models are added to correct the 
errors made by existing models. Models 
are added sequentially until no further 
improvements can be made.

• Gradient boosting is a boosting approach 
where gradient descent algorithm is used 
to minimize the loss when adding new 
models.

• The XGBoost library [2] implements the 
gradient boosting decision tree algorithm.

…..
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• Mean Absolute Percentage Error (MAPE)

• Weighted Mean Absolute Percentage Error (WMAPE)

• Root Mean Squared Percentage Error (RMSPE)

Evaluation Metrics

Where,
𝐴𝑡 – Actual Passenger Count 
𝐹𝑡 – Forecasted Passenger Count
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• Area Under the Absolute Percentage Error(APE) Curve

•

• Cumulative frequency of APE bins

• 𝐴𝑃𝐸 > 100 are ignored in this curve

• More the area under the curve, accuracy is better

• Trapezoidal rule to approximate the area under the APE curve

• Normalized to match other error metrics

• Slope of Trendline for Absolute Percentage Error Curve
• Trendline of APE frequency scatter plot

• Slope coefficient of the trendline 

• Normalized to match other error metrics

Evaluation Metrics (Continued)
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Results
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Results
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• In 2017, Doha to Dubai market’s passenger count dropped by big margin due to diplomatic crisis between 
UAE and Qatar.

Example: Where forecasting fails
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SUPPLEMENTARY DATA
Shopping data to aid in forecasting demand
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Shopping Data for Network Planning

Feb 2019 Jul 2019

Flown bookings
1

Current Forecast
2

New Forecast
3

Feb 2018 Jul 2018

Requests for 
July as of Feb

3a

Bookings for 
July as of Feb

3
b

Requests for 
July as of Feb

3c

Bookings for 
July as of Feb

3
d
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• Base historical demand data
• Consists of historical global demand reported by market

• Exogenous historical Shopping Data
• Consists of historical shopping data across markets

The Data

Sample Shopping Data Sample Demand Data 
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• Join shopping data to historical demand data keeping track of 
• Markets shopped, Markets booked, Departure Date, Shopped Dated, Booked Date

• Create lagged input variables for all variables
• Resulting data set has 89 columns

The Approach: Data Preprocessing
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• For each market build series of univariate time series model and combine these 
models using a simple average.  (Call this combination model SE- Strong 
Ensemble)

• Fuse exhaustive search feature selection wrapper with xgboost model that 
uses as input the shopping data and demand data at different lags, say lag5, 
lag6, lag7,..,lag12. 

• For each market using the wrapper defined above perform Cross Validation on 
training data to get a model that uses shopping data to predict demand data 5 
months ahead. (Call this CVFSM- Cross Validated-Feature Selection)

• Combine the CVFSM and SE models using simple average.

The Approach: Time Series & ML Strategies
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• We predict market size 5 months in advance for 250 top NA markets

• HIST_DATA_MODEL model only uses historical data and has 17.7% error

• New CVFSM-SE model uses both historical and shopping data and has 6.3% error

Results

Model WMAPE

HIST_DATA_MODEL 17.7%

BASELINE 17.2%

BOOKED_LAG12 14.7%

CVFSM-SE 6.3%

hybrid 14.1%

hybrid_XREG 13.9%

NNETAR 20.1%

ORIG_XGB 17.2%
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• Use additional data sources
• Econometric data like GDP
• Advance booking data to better predict spikes/dips in demand

• Other algorithms like neural networks and random forests

Future Work
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