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• We study an integrated airline fleet assignment and 
schedule design with passenger choice.
– Schedule Design: Which flights are selected to fly?

– Fleet Assignment: Which aircraft type is assigned to a flight?

BOS → SFO, Departure: 8AM

? ? ?

BOS → SFO, Departure: 8AMBOS → SFO, Departure: 10AM BOS → SFO, Departure: 2PM

Introduction
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Introduction

• We study integrated airline fleet assignment and schedule 
design

– Which flights are selected to fly?

– Which aircraft type is assigned to a flight?

– Demand Spill-and-Recapture Behaviors:
• Substitution among available products

• Spill from unavailable products to available ones

Heavily depends on the 
“Passenger Demand” for 

each flight. 
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• We study integrated airline fleet assignment and schedule 
design with passenger choice.

– Which flights are selected to fly?

– Which aircraft type is assigned to a flight?

– Demand Spill-and-Recapture Behaviors:
• Substitution among available products

• Spill from unavailable products to available ones

Airline Network Planning

Passenger Choice Modeling

Introduction
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BOS

SFO

O-D Market

BOS-CLT-SFO 

Dep: 5:00 AM Arr: 12:12 PM

Refundable, $930

BOS-CLT-SFO

Dep: 5:00 AM Arr: 12:12 PM

Non-refundable, $451

BOS-PHL-SFO

Dep: 5:00 AM Arr: 10:47 AM

Refundable, $1031

BOS-PHL-SFO

Dep: 5:00 AM Arr: 10:47 AM

Non-refundable, $396

Fare Products Attractiveness Purchase Prob.

Other airlines’ products

1

3

2

4

10

5%

15%

10%

20%

50%

Demand Modeling – Multinomial Logit Model (MNL)
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BOS

SFO

O-D Market

BOS-CLT-SFO 

Dep: 5:00 AM Arr: 12:12 PM

Refundable, $930

BOS-CLT-SFO

Dep: 5:00 AM Arr: 12:12 PM

Non-refundable, $451

BOS-PHL-SFO

Dep: 5:00 AM Arr: 10:47 AM

Refundable, $1031

BOS-PHL-SFO

Dep: 5:00 AM Arr: 10:47 AM

Non-refundable, $396

Fare Products Attractiveness Purchase Prob.

Other airlines’ products

1

3

2

4

10

6.67%

0%

0%

26.67%

66.67%

Demand Modeling – Multinomial Logit Model (MNL)
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• Given:
– Flight schedule: a set of (optional) flight legs

– Aircraft fleet: consisting of different fleet types

– Passenger demand patterns

– Fares and operating cost data

• Find:
– A selection of flights as well as a feasible fleet 

assignment, that maximizes: 

Profit = Total revenue – Total operating cost

Problem Definition

8/33



• Wei, K., V. Vaze, and A. Jacquillat (2020). “Airline Timetable 
Development and Fleet Assignment Incorporating Passenger 
Choice”. Transportation Science, 54(1), 139–163.

– Timetable development from scratch (“clean slate”)

– Discrete choice model integrated into a large-scale optimization 
problem

– Development of MIP-based solution heuristics: employing 
Decomposition, Variable Fixing, Symmetry Induction

• Ignores Revenue Management

– Successfully handles instances with 1 fare product per itinerary

– Not tractable under multiple products and multiple customer 
segments

Provides motivation for this talk

Recent Work

9/33



• Decision variable:

– 𝑥𝑙,𝑓 = 1 if flight leg 𝑙 is assigned with fleet type 𝑓; 0, otherwise

Maximize: profit=revenue-cost

Mandatory flights should be operated by 
one fleet type

Aircraft flow 
balance

Aircraft availability 

Optional flights can be cancelled

Choice-based 

revenue management

A General Formulation for Choice-based Schedule 
Design and Fleet Assignment (CSD-FAM)
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• Model demand substitutions via a MNL choice model.
• ℎ𝑝, price of fare product 𝑝.

• 𝜐𝑝, utility of fare product 𝑝.

• 𝜐𝑚, utility of competing airlines’ products in O-D market 𝑚.

• 𝑠𝑝, sale of fare product 𝑝.

• 𝑠𝑚, sale of competing airlines’ products in O-D market 𝑚.

Maximize: revenue

Total sale on each flight <= capacity

Sale ratio / utility ratio consistency

Total sale of each O-D market = demand  

(Gallego, Ratliff  and Shebalov 2014)

Optimal Revenue for a Fixed Fleet Assignment
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• CSD-FAM is notoriously difficult to solve.

– The difficulty comes from strong network effects.

– Under the same computational budget, it often cannot 
produce a better solution compared to the one from a 
model which does not capture demand substitutions.

• Goal: develop a tractable approximation and 
decomposition scheme to solve CSD-FAM more 
effectively and efficiently.

On CSD-FAM
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BOS->ORD, 10AM

ORD->SFO, 2PM

DFW->SEA, 1PM

Flights O-D Market

BOS->ORD

BOS->SFO

SFO->ORD

DFW->SEA

DFW->SEA, 9AM

BOS-ORD, $300

BOS-ORD, ORD-SFO, $450

ORD-SFO, $280

DFW-SEA, $380

Fare Product

DFW-SEA, $310

Subnetwork 1

Subnetwork 2

Decomposition of the Problem

Proposition 1: With independent partition, subnetwork revenue does not 
depend on fleet assignment to flights not in the subnetwork, and total revenue 

can be perfectly decomposed as the sum of revenues of individual subnetworks.
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Such independent partition might give 
you very large sized subnetworks …

Challenge
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• How to decompose into smaller subnetworks 
without sacrificing optimality too much? 

BOS->ORD, 10AM

ORD->SFO, 2PM

BOS-ORD, $300

BOS-ORD, ORD-SFO, $450

ORD-SFO, $280

BOS->ORD

BOS->SFO

SFO->ORD

2. How to split the fare?

Approximation of the Problem

1. How to 
create 
subnetworks?

3. How to solve the 
decomposed CSD-FAM?
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DFW->SEA, 1PM

BOS-ORD, $300

ORD-SFO, $280

DFW-SEA, $380

Flights O-D Market

BOS->ORD

SFO->ORD

DFW->SEA

DFW->SEA, 9AM

Fare Product

DFW-SEA, $310

BOS-ORD, ORD-SFO, $450

BOS->SFO

BOS->ORD, 10AM

ORD->SFO, 2PM

1. How to Create Subnetworks?
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• Key Result: 

– Suppose the subnetworks are created from the maximally connected 
components after removing all products in some set 𝑃,

we have: 

0 ≤
𝑘=1

𝐾

𝑟𝑘 𝒙𝒌, 𝒉𝒌 − 𝑟 𝒙, 𝒉 ≤ 

𝑝∈ 𝑃

ℎ𝑝 ҧ𝜇𝑝

for any fleet assignment 𝑥, where ҧ𝜇𝑝 is the maximum sale of                                   

product 𝑝.

• Heuristic Sketch:

– Removing product nodes in ascending order of their revenue 
contribution until certain level of fragmentation is reached.

1. How to Create Subnetworks? (cont’d)

Does not depend 
on the fare split.
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• For each subnetwork 𝑖, define its price vector as ℎ𝑖.

BOS->ORD, 10AM

ORD->SFO, 2PM

BOS-ORD, $300

BOS-ORD, ORD-SFO, $225

ORD-SFO, $280

BOS->ORD

BOS->SFO

SFO->ORD

Example:

BOS-ORD, ORD-SFO, $225

2. How to Split the Fare?
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• Common heuristics: distance-based proration.

BOS->ORD, 10AM

ORD->SFO, 2PM

BOS-ORD, $300

BOS-ORD, ORD-SFO, $306

ORD-SFO, $280

BOS->ORD

BOS->SFO

SFO->ORD

Example:

867 miles

1,846 miles

BOS-ORD, ORD-SFO, $144

2. How to Split the Fare? (cont’d)
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• Back to our Key Result:

0 ≤
𝑘=1

𝐾

𝑟𝑘 𝒙𝒌, 𝒉𝒌 − 𝑟 𝒙, 𝒉 ≤ 

𝑝∈ 𝑃

ℎ𝑝 ത𝜋𝑝

=>

1. Choose subnetworks that minimize revenue bound

2. Find the optimal fare split to achieve the tightest upper 
bound:

– YES! This can be cast as a single linear program.


𝑘=1

𝐾

𝑟𝑘 𝒙𝒌, 𝒉𝒌 ≥ 𝑟 𝒙, 𝒉

min
𝒉𝟏,…,𝒉𝑲:σ𝑘 𝒉

𝒌=𝒉


𝑘=1

𝐾

𝑟𝑘 𝒙𝒌, 𝒉𝒌

2. How to Split the Fare? (cont’d)
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• The fare split optimization problem is:

min
𝒉𝟏,…,𝒉𝑲:σ𝑘 𝒉

𝒌=𝒉


𝑘=1

𝐾

𝑟𝑘 𝒙𝒌, 𝒉𝒌

• Taking the dual of the inner maximization problem, this fare 
and market split optimization problem can be reformulated as 
a linear program.

• Under what fleet assignment 𝒙 shall we optimize for the fare 
split? 

2. How to Split the Fare? (cont’d)
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• We solve:

min
𝒉𝟏,…,𝒉𝑲:σ𝑘 𝒉

𝒌=𝒉
max
𝑥∈𝜒


𝑘=1

𝐾

𝑟𝑘 𝒙𝒌, 𝒉𝒌

where 𝜒 is the set of all feasible fleet assignments.

- This is a very hard problem to solve.

- But with linear relaxation of the inner maximization 
can be dualized to efficiently provide a potentially 
looser but still valid revenue upper bound.

2. How to Split the Fare? (cont’d)
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• Revenue function is decomposed 
into the sum of subnetwork revenue 
based on the local fare vector ℎ𝑖.

• We develop further reformulation 
technique to tighten its LP relaxation 
bound based on a Dantzig-Wolfe 
type reformulation.

3. How to Solve the Decomposed CSD-FAM?

Moreover, we can avoid column generation, by using a variable 
reduction technique based on parsimonious enumeration 
(Barnhart et al., 2009).
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• Utilize composite variable to isolate network effect 
(Barnhart et al. 2009).
– Two actual fleet types: A, B.
– ∅ ≅ not assign any fleet type

– Define: 𝑤𝑗 = 1 if assignment 𝑗 is applied.

• Better formulation with tightened LP relaxation.
• We find that a mixed approach works even better:

– Mixed-subnetwork based CSD-FAM
– Decompose only a part of the network

Subnetwork 1 Fleet Assignment

Flight 1 2 3 4 5 6 7 8 9

BOS->ORD A B ∅ A B ∅ A B ∅

ORD->SFO A A A B B B ∅ ∅ ∅

Subnetwork-based CSD-FAM (S-CSD-FAM)

24/33



Flight-Fleet Based 
Representation

• Revenue function is decomposed into the sum of subnetwork revenue 
based on the local fare vector ℎ𝑖.

Decomposed Formulation

Composite Variable 
Representation

Mixed Representation
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Theorem 1: Size-Strength Tradeoff

• As more subnetworks in the mixed formulation are 
represented by composite variables, strength 
increases but problem size also grows.

LP Relaxation LP Relaxation LP Relaxation
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Overall Solution Algorithm
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• Two instances:

• Evaluate profit of our solution S-CSD-FAM(Π𝑐 , Π𝑡, 𝐻) against:
– CSD-FAM: choice-based formulation without decomposition

– ISD-FAM: independent-demand formulation without decomposition

– ISD-FAM-SR-ITIN: ISD-FAM with spill and recapture

– CSD-FAM(Π,𝐻): choice-based formulation with decomposition but 
without composite variables

• Next slide reports results after 5 Hr CPU time

• All revenues reported in Million Dollars per Year

Computational Results
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Under Booking Simulation and 
Imperfect Demand Forecasts
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• We provide a tractable decomposition of the 
choice-based integrated airline fleet assignment 
and schedule design.

• Demonstrate significant, consistent and robust 
profit improvements over all existing methods.

• Choice-based airline network planning represents 
a promising and fruitful future direction.

• Possible implementation at industry partner.

Summary
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