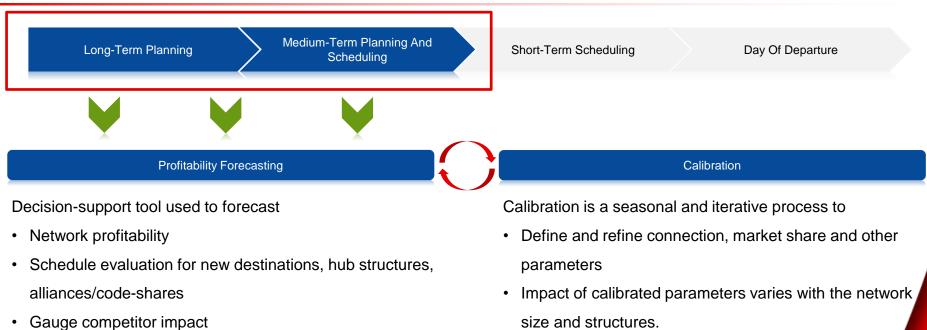
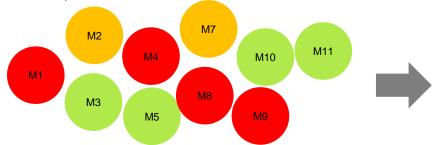

The freedom to better market sell serve operate the way you want

Airline Market Segmentation Himadri Mukherjee, Lakshmi Manasa Kasivajjula, Vineeth Patapati


May 2017 • Sabre Airline Solutions Operations Research

Presentation outline

Planning and Scheduling – Profitability Forecasting & Calibration


- Calibration parameters are currently generated either at entity (region pair/market group) level or market level
- Input data for the analysis is also currently picked at entity level or market level

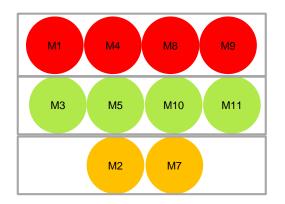
Market Segmentation - Problem Background

Motivations

Current state:

- Entities (Region Pairs) are heterogeneous, purely geographical concept based & not dynamic or data driven.
- This leads to increased calibration time due to market specific adjustments

Expectations from Optimum Market Grouping

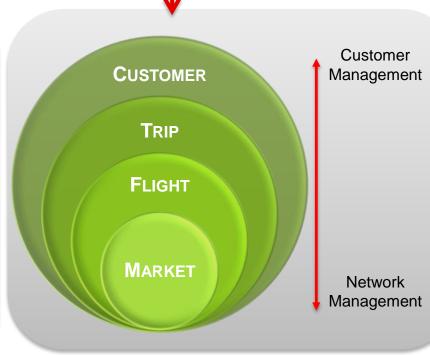

- Lesser number of market-groups
- Higher calibration accuracies
- Lesser number of overrides

Solutions

Accurate allocation of new markets to market groups

Expected state:

- Market groups which are homogeneous, capture passenger behavior, dynamic and data driven
- · Less or no need for market specific over rides

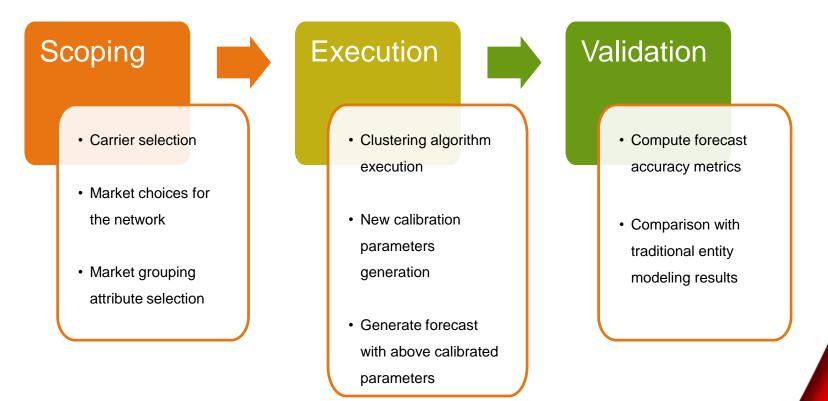


- Faster calibration time
- Improved future forecasting capability with dynamic allocation or markets based on attribute changes

Segmentation

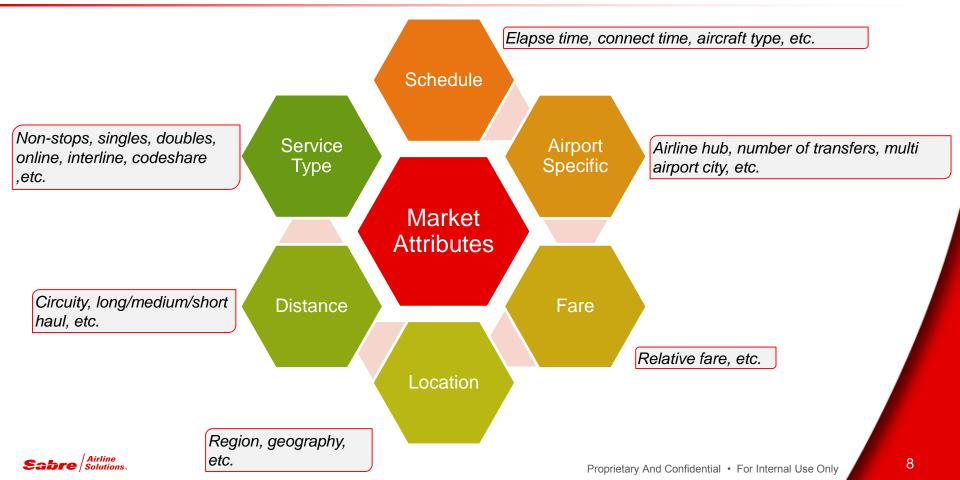
- Distinct groups of similar entities
- Intuitive
- Verifiable against business knowledge
- Relevant to the decision-making context

- Describe group-level
 behavior
- Predict behavior by group with what-if analysis
- Influence group behavior through customized decisions


Sabre Airline

Segmentation Use Cases

- Shopping requests
- Trips
- Hotel reservations
- Customers
- Destinations
- Markets



Market Segmentation - Benchmark Methodology

Market Attributes

Shortlisted Market Characteristics

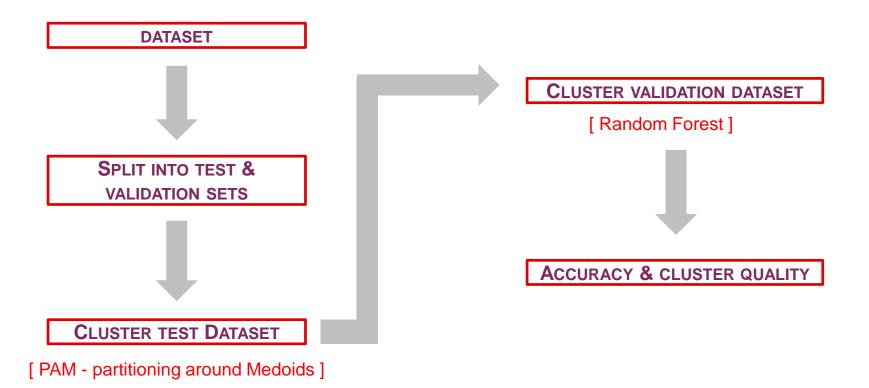
- Market circuitry (ratio of total distance travelled by the itinerary to the non stop distance of the market)
- Market elapsed time ratio (ratio of elapsed time of itinerary to the shortest elapsed time possible)
- Market connect time
- Departure TOW

Aircraft type

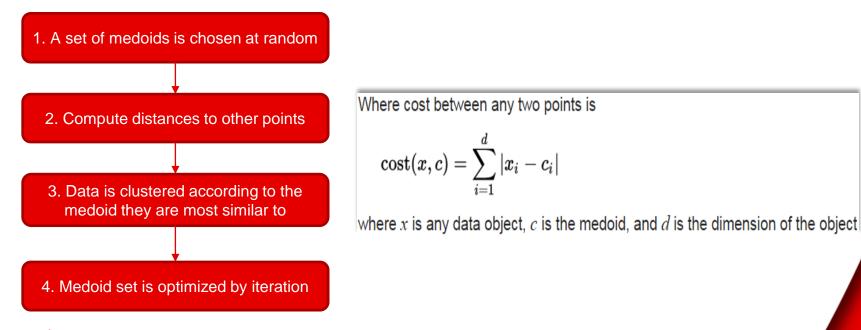
Market size

- Aircraft type
- Service types (traffic share of service types)

Number of distinct itineraries in a market


• Non stop, Single online, Double Online, Single Interline, Double Interline

- Geography
- LCC presence

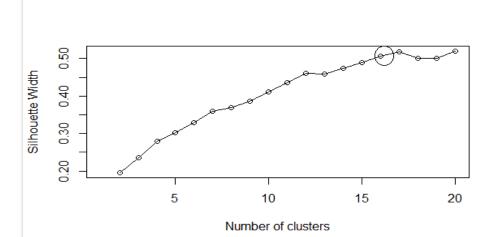

Clustering Methodology

Sabre Airline Solutions.

PAM (Partitioning around Medoids)

- More robust to noise and outliers as compared to k-means because it minimizes a sum of pairwise dissimilarities instead of a sum of squared Euclidean distances
- o Applicable for data sets which has continuous as well as categorical variables
- o Dissimilarity matrix is constructed using Gower's general similarity coefficient

Sabre Airline Solutions

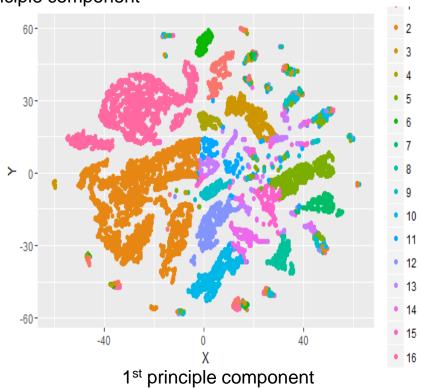

11

Optimal Number of Clusters

To find optimal number of clusters: Silhouette width

High value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters

$$s(i)=rac{b(i)-a(i)}{\max\{a(i),b(i)\}}$$


a(i) be the average dissimilarity of i with all other data within the same cluster
b(i) is the lowest average dissimilarity of i to any other cluster, where i is not a member
Silhouette Width – average of silhouettes over the entire dataset

Cluster Characteristics

2st principle component

Cluster	Characteristics		
1	Urgent Traveler Markets		
2	Budget Traveler Markets		
3	Loyalty Traveler Markets		
4	Business Traveler Markets		
5 Traditional Traveler Marke			
6	Leisure Traveler Markets		
•			
	•		
	•		
16	Relaxer Traveler Markets		

Examples

By standard entity-based method all the markets are grouped in the same entity (WEU_SCAND),

but by the new method these markets fall under different market-groups as:

- TXL_ARN has higher pax,non stop and high distinct itins
- · TXL_KTT has low pax, low distinct itin and mostly single online service type
- TXL_GOT has medium pax and medium distinct itins compared to other two markets

By standard entity-based method the above markets are grouped into different entities like CNAM_SSAM/UK_IND/SME_EASIA based on geography,

but by the new method these markets fall under one single market-group due to similar market characteristics like :

higher pax, similar departure times and higher distinct itineraries

Sabre Airline

Calibration KPIs – Entity parameters vs. Cluster parameters

Dimension	Standard Entity-Based Method	Method(Only connection	New Clustering/Segmentation Method(connection + other attributes)
Number of market groups	100+	16	16
OA Match Percentage	88%	86%	90%
OA Overbuild Ratio	1.68	1.8	1.69
Host Match Percentage	93%	94%	95%
Host Overbuilt Ratio	2.91	3.8	3.31
Market-Share Error	2.7%	2.9%	2.8%
Number of overrides	0	0	0
Automation	Static/Manual	itic/Manual Completely automated	
Time to calibrate	Estimated saving of 1 week's effort (13%)		
Attributes considered	Only geography Geography + several other		

Except 'Host Overbuild' the new method is superior or similar in all the counts

Improvement in all the counts by increasing attributes

- · More market attributes into the model
- Robust Modeling methods:
 - Ensemble approaches for accuracy improvement in grouping

- · Tests across various kinds of airline networks
- · Model validation for calibration process improvement checks
- · Model validation for decision support improvement checks

