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Motivation — limitations of RMS

RMS assumptions

— RMS assumes that the future is accurately described by the past:
* Issue with change in business environment (new competitors)
* Issue with shift in demand and willingness to pay
* Issue with change in customer behavior (for example: arrival pattern)

— RMS assumes that customers are rational:
* However, customers are irrational, influenced by psychological factors (framing, etc.).
* There is no model for irrationality.

— RMS assumes monopoly:

* Competitors offers are accounted for implicitly by how they affect customers behavior. This
corresponds to a monopoly seen from RMS

— RMS assumes that a model exist that describes “world”. For general offers this is impossible:

* Increased complexity of offers (seat + ancillaries)
* Complex products (flexibility, time to think, etc.), bundles of ancillaries; are difficult to price.
* Interactions between the prices of ancillaries, bundles, fare families, etc.
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REINFORCEMENT CLASSICAL
LEARNING REVENUE MANAGEMENT

Balancing exploitation and Collect observations
exploration Experimentation

Low dimensions

degrees of freedom

Build forecasting model

Many All future customers

iterations

Optimization - Multiple sequential decisions
Dynamic Programming (Bellman 1950s)

Iterative Solution Complete
T solution

Proof in 1990s

SUPERVISED
MACHINE LEARNING

High dimensions
(degrees of freedom)

Build forecasting model
One given customer

Classification

Prediction
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Application of RL

self-driving cars

aMaDEUS 5



How it works?

Agent ]

(1) Actions ""[ °

(2) State e action
(3) Reward ' Tl

" s | Environment




START LEARNING

Actions: { Left, no-change, Right }
State: {Information of Sensors }

Reward = stay alive as long as possible
(Alive = no crash)

>

Sensors ...
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No demand
forecast

No modeling
passenger

behavior (WTP)

No RM
optimization
model




Reinforcement Learning
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Experimentation
our research journey ...
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Experiments a

Base Reinforcement Learning in a Monopoly

Simulation set-up

Cap =10

DCP =20

Fare classes = 3 - =

Fenceless fare structure AL1 (O %
AAA BBB

RMS basecase

* AL1l: Dynamic Programming
* Two customer segments with different frat5
* Forecaster = Q-forecasting

Reinforcement Learning

* No Forecaster or Optimizer
 ALl: Q-learning

» State (t,x)

e Action: f1,f2,f3, closed
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Experiments a

Base Reinforcement Learning in a Monopoly

Theoretical optimum

Revenue
=> perfect demand forecast, perfect WTP
110% models, no changes in the market
105%

100% ]”TMT‘W 1r|‘|1'ler!H e "“'”m*' iy ' WL i1

95%

90%

85%

80% v" RL can solve the problem.
Revenue with RL v RL converges to the optimal solution

— Poor performance (RL needs a lot of

75%

70% .
data and computation.
65%
60%
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Data (Years)
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Experiments G

Base Reinforcement Learning in a Monopoly

Time to departure

Departure

Lack of observations

Empty Bookings

Full

A 4
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RL Policies vs. Optimal Policies

(cabin empty at
departure)

Lack of observations
(cabin full far from
departure)

Good policies where we
have lots of
observations
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Deep Reinforcement Learning a

Deep Neural Network

Classical Artificial Neural Networks

Input Output

man

Accuracy:
worse than other ML methods

Deep Neural Network

Input Layerl Layer2 Layer3 Output

woman

Accuracy:
better than other ML methods
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Deep Reinforcement Learning a

Deep Neural Network as function approximation

What is function approximation?

(s,a) > Q(s,a)

(s,a) » Q(s,a,0) =as + Ba

(s,a) > Q(s,a, @)
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Experiments a

+ Deep Learning

Revenue
Normal RL 110%

105% %W
100% Mﬁ
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Deep RL 110% —
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99% 80%

~ 70%
o 60% E

flight data opt. rev 50%

40% :
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Data (Year)
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Experiments e

Reinforcement Learning in Duopoly

Simulation set-up

Cap =50

DCP=20

Fare classes = 10
Fenceless fare structure

RMS basecase

* AL1l: Dynamic Programming

 A2:AT80

* Two customer segments with different frat5

* Estimated frat5 (optimal revenue) =====e o= I

* Forecaster = Q-forecasting

Reinforcement Learning

* No Forecaster or Optimizer

* AL1: DeepRL

» State (t,x)

e Action: f1,f2,f3,...,f10, closed

Frat5 scaling factor
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Experiments e
One Competitor + GRUSs

DRL vs Competitor

!== Revenue

RMS vs Competitor

Revenue

DRL

100%

89% ~

80%

1 11 21 31 41 51 61 71 81 91
Months

1 11 21 31 41 51 61 71 81
Months

=——RMS em—AT80 =—DQL ==——=AT80 aMaDEUS 18



Ny is RL better?a

0.8

Booking Curve
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16

DRL open classes
close to departure

DRL closes classes

far from departure

Booking curve

0.8

0.6

0.4

0.2

8 12
——DRL =—AT80

[
put

Lowest available fa
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Remember RMS were optimal
DRL produces higher revenue by
understanding the competitive g

swamping the competitors with low yield

passengers.

ame and
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Conclusion

* C(Classical RMS techniques are no longer
sufficient.
* RLopensthe door to a radical new

approach:
» Model free
» No forecasting
» No optimization
» Leans by direct price testing

e Shown that RL = RMS for monopoly
e We discover the richness of RL
* Beats RMS against competition

future

More complex scenarios:

YV VVY

>

Full Networks

Many competitors

Pricing of complex product
Pricing of psychological factors -
irrational customers.

Shift in demands/WTP

Improve learning performance
Add more information to the state (eg.,
competitors and market)
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