The end of Airline Revenue Management as we know it?

(Deep) Reinforcement Learning for Revenue Management

AGIFORS Symp 2017, London October 2017

Speakers: Rodrigo ACUNA AGOST and Thomas FIIG

Credits

(Deep) Reinforcement Learning for Revenue Management

Nicolas BONDOUX

Quan NGUYEN

Thomas FIIG

Rodrigo ACUNA-AGOST

amadeus

Motivation – limitations of RMS

RMS assumptions

- RMS assumes that the future is accurately described by the past:
 - Issue with change in business environment (new competitors)
 - Issue with shift in demand and willingness to pay
 - Issue with change in customer behavior (for example: arrival pattern)
- RMS assumes that customers are rational:
 - However, customers are irrational, influenced by psychological factors (framing, etc.).
 - There is no model for irrationality.
- RMS assumes monopoly:
 - Competitors offers are accounted for implicitly by how they affect customers behavior. This
 corresponds to a monopoly seen from RMS
- RMS assumes that a model exist that describes "world". For general offers this is impossible:
 - Increased complexity of offers (seat + ancillaries)
 - Complex products (flexibility, time to think, etc.), bundles of ancillaries; are difficult to price.
 - Interactions between the prices of ancillaries, bundles, fare families, etc.

Application of RL

Self-driving cars

How it works?

Actions: { Left, no-change, Right }

State: { Information of Sensors }

Reward = stay alive as long as possible

(Alive = no crash)

Reinforcement Learning

Mathematical details*)

$$V(t,x) = Max_f [(1 - P(f))V(t+1,x) + P(f)(f+V(t+1,x-1))]$$

$$V(s) = Max_a \sum_{s'} \frac{P_{ss'}^a}{[R_{ss'}^a + V(s')]}$$

Q-learning Watkins (1989)

Bellman (1950s)

$$Q(s,a) = \sum_{s'} P_{ss'}^a [R_{ss'}^a + V(s')]$$

$$V(s) = Max_a Q(s, a)$$

$$Q(s,a) \leftarrow [1-\alpha]Q(s,a) + \alpha[f + V(s')]$$

amadeus

Base Reinforcement Learning in a Monopoly

Simulation set-up

Cap = 10

DCP = 20

Fare classes = 3

Fenceless fare structure

RMS basecase

- AL1: Dynamic Programming
- Two customer segments with different frat5
- Forecaster = Q-forecasting

Reinforcement Learning

- No Forecaster or Optimizer
- AL1: Q –learning
- State (t,x)
- Action: f1,f2,f3, closed

Base Reinforcement Learning in a Monopoly

Base Reinforcement Learning in a Monopoly

Deep Reinforcement Learning (2)

Deep Neural Network

Classical Artificial Neural Networks

Accuracy: worse than other ML methods

Deep Neural Network

Accuracy: **better** than other ML methods

Deep Reinforcement Learning 2

Deep Neural Network as function approximation

What is **function approximation**?

+ Deep Learning

Reinforcement Learning in Duopoly

Simulation set-up

Cap =50

DCP=20

Fare classes = 10

Fenceless fare structure

RMS basecase

- AL1: Dynamic Programming
- A2: AT80
- Two customer segments with different frat5
- Estimated frat5 (optimal revenue) -----
- Forecaster = Q-forecasting

Reinforcement Learning

- No Forecaster or Optimizer
- AL1: Deep RL
- State (t,x)
- Action: f1,f2,f3,...,f10, closed

Experiments One Competitor + GRUs

RMS vs Competitor

Why is RL better? 3

- Remember RMS were optimal
- DRL produces higher revenue by understanding the competitive game and swamping the competitors with low yield passengers.

Conclusion

- Classical RMS techniques are no longer sufficient.
- RL opens the door to a radical new approach:
 - Model free
 - No forecasting
 - > No optimization
 - > Leans by direct price testing
- Shown that RL = RMS for monopoly
- We discover the richness of RL
- Beats RMS against competition

today

- > Full Networks
- Many competitors
- Pricing of complex product
- Pricing of psychological factors irrational customers.
- > Shift in demands/WTP
- Improve learning performance
- Add more information to the state (eg., competitors and market)